Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (15.74 MB, 756 trang )
686
Appendix Tables
P0(Sϩ Ն c1) ϭ P(Sϩ Ն c1 when H0 is true)
Table A.13 Critical Values for the Wilcoxon Signed-Rank Test
n
c1
P0(Sϩ Ն c1)
3
4
6
9
10
13
14
15
17
19
20
21
22
24
26
28
28
30
32
34
35
36
34
37
39
42
44
41
44
47
50
52
48
52
55
59
61
56
60
61
64
68
71
64
65
69
70
74
.125
.125
.062
.094
.062
.031
.109
.047
.031
.016
.109
.055
.023
.008
.098
.055
.027
.012
.008
.004
.102
.049
.027
.010
.004
.097
.053
.024
.010
.005
.103
.051
.027
.009
.005
.102
.055
.046
.026
.010
.005
.108
.095
.055
.047
.024
5
6
7
8
9
10
11
12
13
n
14
15
16
17
18
19
20
c1
P0(Sϩ Ն c1)
78
79
81
73
74
79
84
89
92
83
84
89
90
95
100
101
104
93
94
100
106
112
113
116
104
105
112
118
125
129
116
124
131
138
143
128
136
137
144
152
157
140
150
158
167
172
.011
.009
.005
.108
.097
.052
.025
.010
.005
.104
.094
.053
.047
.024
.011
.009
.005
.106
.096
.052
.025
.011
.009
.005
.103
.095
.049
.025
.010
.005
.098
.049
.024
.010
.005
.098
.052
.048
.025
.010
.005
.101
.049
.024
.010
.005
Appendix Tables
P0(W Ն c) ϭ P(W Ն c when H0 is true)
Table A.14 Critical Values for the Wilcoxon Rank-Sum Test
m
n
c
P0(W Ն c)
3
3
4
15
17
18
20
21
22
23
24
24
26
27
27
28
29
30
24
25
26
27
28
29
30
30
32
33
34
33
35
36
37
36
38
40
41
36
37
39
.05
.057
.029
.036
.018
.048
.024
.012
.058
.017
.008
.042
.024
.012
.006
.057
.029
.014
.056
.032
.016
.008
.057
.019
.010
.005
.055
.021
.012
.006
.055
.024
.008
.004
.048
.028
.008
5
6
7
8
4
4
5
6
7
8
5
5
687
m
n
6
7
8
6
6
7
8
7
7
8
8
8
c
P0(W Ն c)
40
40
41
43
44
43
45
47
48
47
49
51
52
50
52
54
55
54
56
58
60
58
61
63
65
66
68
71
72
71
73
76
78
84
87
90
92
.004
.041
.026
.009
.004
.053
.024
.009
.005
.047
.023
.009
.005
.047
.021
.008
.004
.051
.026
.011
.004
.054
.021
.01
.004
.049
.027
.009
.006
.047
.027
.01
.005
.052
.025
.01
.005
688
Appendix Tables
Table A.15 Critical Values for the Wilcoxon Signed-Rank Interval
n
5
6
7
8
9
10
11
12
Confidence
Level (%)
c
n
93.8
87.5
96.9
93.7
90.6
98.4
95.3
89.1
99.2
94.5
89.1
99.2
94.5
90.2
99.0
95.1
89.5
99.0
94.6
89.8
99.1
94.8
90.8
15
14
21
20
19
28
26
24
36
32
30
44
39
37
52
47
44
61
55
52
71
64
61
13
14
15
16
17
18
19
(xෆ(n(nϩ1)/2Ϫcϩ1), xෆ(c))
Confidence
Level (%)
c
n
99.0
95.2
90.6
99.1
95.1
89.6
99.0
95.2
90.5
99.1
94.9
89.5
99.1
94.9
90.2
99.0
95.2
90.1
99.1
95.1
90.4
81
74
70
93
84
79
104
95
90
117
106
100
130
118
112
143
131
124
158
144
137
20
21
22
23
24
25
Confidence
Level (%)
99.1
95.2
90.3
99.0
95.0
89.7
99.0
95.0
90.2
99.0
95.2
90.2
99.0
95.1
89.9
99.0
95.2
89.9
c
173
158
150
188
172
163
204
187
178
221
203
193
239
219
208
257
236
224
Appendix Tables
Table A.16 Critical Values for the Wilcoxon Rank-Sum Interval
689
(dij(mnϪcϩ1), dij(c))
Smaller Sample Size
5
6
7
8
Larger
Sample Size
Confidence
Level (%)
c
Confidence
Level (%)
c
Confidence
Level (%)
c
Confidence
Level (%)
c
5
99.2
94.4
90.5
99.1
94.8
91.8
99.0
95.2
89.4
98.9
95.5
90.7
98.8
95.8
88.8
99.2
94.5
90.1
99.1
94.8
91.0
99.1
95.2
89.6
25
22
21
29
26
25
33
30
28
37
34
32
41
38
35
46
41
39
50
45
43
54
49
46
99.1
95.9
90.7
99.2
94.9
89.9
99.2
95.7
89.2
99.2
95.0
91.2
98.9
94.4
90.7
99.0
95.2
90.2
99.0
94.7
89.8
34
31
29
39
35
33
44
40
37
49
44
42
53
48
46
58
53
50
63
57
54
98.9
94.7
90.3
99.1
94.6
90.6
99.2
94.5
90.9
99.0
94.5
89.1
98.9
95.6
89.6
99.0
95.5
90.0
44
40
38
50
45
43
56
50
48
61
55
52
66
61
57
72
66
62
99.0
95.0
89.5
98.9
95.4
90.7
99.1
94.5
89.9
99.1
94.9
90.9
99.0
95.3
90.2
56
51
48
62
57
54
69
62
59
75
68
65
81
74
70
6
7
8
9
10
11
12
Smaller Sample Size
9
10
11
12
Larger
Sample Size
Confidence
Level (%)
c
Confidence
Level (%)
c
Confidence
Level (%)
c
Confidence
Level (%)
c
9
98.9
95.0
90.6
99.0
94.7
90.5
99.0
95.4
90.5
99.1
95.1
90.5
69
63
60
76
69
66
83
76
72
90
82
78
99.1
94.8
89.5
99.0
94.9
90.1
99.1
95.0
90.7
84
76
72
91
83
79
99
90
86
98.9
95.3
89.9
99.1
94.9
89.6
99
91
86
108
98
93
99.0
94.8
89.9
116
106
101
10
11
12
690
Appendix Tables
Table A.17  Curves for t Tests

1.0

␣ ϭ .05, two-tailed
1.0
␣ ϭ .05, one-tailed
df ϭ 1
.8
.8
99
74
49
39
29
.6
.6
29
39
49
.4
.4
.2
19 14 9 6
df ϭ 2
3
4
.2
74
19
99
0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
d
0

2
0.4
0.8
4
14
9
1.2
3
6
1.6
2.0
2.4
d
2.8

1.0
1.0
␣ ϭ .01, two-tailed
␣ ϭ .01, one-tailed
.8
df ϭ 2
.8
df ϭ 2
.6
.6
3
39
3
49
.4
.2
14
99
0
0.4
9
74
6
1.2
1.6
2.0
2.4
4
.2
4
99
29 19
0.8
39
29
19
.4
74
2.8
3.2
d
0
49
0.4
6
9
14
0.8
1.2
1.6
2.0
2.4
2.8
3.2
d
Answers to Selected
Odd-Numbered Exercises
Chapter 1
1. a. Los Angeles Times, Oberlin Tribune, Gainesville Sun,
Washington Post
b. Duke Energy, Clorox, Seagate, Neiman Marcus
c. Vince Correa, Catherine Miller, Michael Cutler, Ken Lee
d. 2.97, 3.56, 2.20, 2.97
3. a. How likely is it that more than half of the sampled computers will need or have needed warranty service? What is
the expected number among the 100 that need warranty
service? How likely is it that the number needing warranty
service will exceed the expected number by more than 10?
b. Suppose that 15 of the 100 sampled needed warranty
service. How confident can we be that the proportion of all
such computers needing warranty service is between .08
and .22? Does the sample provide compelling evidence for
concluding that more than 10% of all such computers need
warranty service?
5. a. No. All students taking a large statistics course who participate in an SI program of this sort.
b. Randomization protects against various biases and helps
ensure that those in the SI group are as similar as possible to
the students in the control group.
c. There would be no firm basis for assessing the effectiveness of SI (nothing to which the SI scores could reasonably
be compared).
7. One could generate a simple random sample of all singlefamily homes in the city, or a stratified random sample by
taking a simple random sample from each of the 10 district
neighborhoods. From each of the selected homes, values of
all desired variables would be determined. This would be an
enumerative study because there exists a finite, identifiable
population of objects from which to sample.
9. a. Possibly measurement error, recording error, differences
in environmental conditions at the time of measurement, etc.
b. No. There is no sampling frame.
|
|
|
|
|
|
||
11. 6L 430
6H 769689
7L 42014202
7H
8L 011211410342
8H 9595578
9L 30
9H 58
The gap in the data—no scores in the high 70’s.
13. a. 12 2
leaf: ones digit
12 445
12 6667777
12 889999
13 00011111111
13 222222222233333333333333
13 44444444444444444455555555555555555555
13 6666666666667777777777
13 888888888888999999
14 0000001111
14 2333333
14 444
14 77
symmetry
b. Close to bell-shaped, center Ϸ 135, not insignificant dispersion, no gaps or outliers.
691