Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (5.06 MB, 200 trang )
Cơ Sở Viễn Thông
Phạm Văn Tấn
1
1
Cos(A+B) + cos (A-B)
(4.5)
2
2
Nếu cosA thay bằng s(t), trong đó s(t) chứa những tần số liên tục từ giữa 0 và fm.
Hình 4.3 cho thấy, sóng biến điệu sm(t) chứa những tần số trong khoảng fC - fm và fC
CosA CosB =
+ fm.
Nếu gán những trị tiêu biểu vào cho fm = 15kHz và fC = 1MHz, ta sẽ thấy khoảng tần số bị
chiếm bởi sóng biến điệu là từ 985.000 đến 1.015.000Hz.
- Thứ nhất: Với khoảng tần số này, thì thì anten có chiều dài hợp lý có thể xây dựng
được. Đó là một trong 2 vấn đề cần giải quyết.
- Vấn đề thứ hai, là khả năng tách kênh trong một hệ đa hợp (Multiplexing). Ta thấy,
nếu một tin tức biến điệu một sóng hình sin tần số fC1 và một tin tức khác biến điệu một sóng
hình sin tần số fC2 thì các ảnh F của 2 sóng mang bị biến điệu sẽ không phủ lên nhau. Và fC1, fC2
tách biệt nhau ít nhất là 2fm.
∆f > 2fm
Hình 4.4: Biến đổi F của 2 sóng AM.
Nếu các tần số của 2 sóng biến điệu không cách nhau xa lắm, cả 2 có thể dùng 1 anten,
mặc dù chiều dài tối ưu của anten không như nhau cho cả 2 kênh [trong thực tế, một anten được
dùng cho cả 1 khoảng tần số.
Ta nhấn mạnh lại rằng, các tín hiệu có thể được tách ra nếu chúng không bị phủ lên nhau (
hoặc về thời gian, hoặc về tần số ). Nếu chúng không phủ nhau về thời gian, có thể dùng các
cổng hay các Switchs để tách. Nếu chúng không phủ về tần số, các tín hiệu có thể tách ra bởi các
lọc dãy thông. Vậy, một hệ thống như hình 4.5 có thể dùng để tách sóng mang bị biến điệu.
H1(f)
1
-fc1
BPF
s1(t).cos2πfc1t
+
s2(t).cos2πfc2t
H1(f)
s1(t). Cos2πfC1t
fc1
H2(f)
1
H2(f)
s2(t). Cos2πfC2t
-fc2
Hình 4.5: Sự tách 2 kênh.
Trang IV.4
fc2
Cơ Sở Viễn Thông
Phạm Văn Tấn
Nếu nhiều tín hiệu được truyền trên cùng một kênh, chú ý có thể được tách ra tại máy thu
bằng các lọc dãy thông. Các lọc này chỉ tiếp nhận, một trong các tín hiệu hiện diện trong tín hiệu
biến điệu mong muốn.
TD: Một tín hiệu chứa thông tin có dạng:
sin2πt
s(t) =
t
Tín hiệu này biến điệu biên độ một sóng mang có tần số 10Hz. Hãy vẽ dạng sóng AM và
biến đổi F của nó.
Giải: Sóng AM được cho bởi phương trình:
sin2πt
sm(t) =
cos 20πt
t
Hàm này được vẽ như hình 4.6:
Hình 4.6: Dạng sóng AM
cos 20πt là sóng mang.
k
), sm (t) = s(t).
10
k
1
, sm(t) = -s(t).
- Khi sóng mang bằng -1, t =
+
10 20
Để vẽ dạng sóng AM. Ta bắt đầu vẽ s(t) và ảnh qua gương của nó -s(t). Sóng AM chạm
một cách tuần hoàn vào mỗi đường cong này và thay đổi biên đô giữa những điểm tuần hoàn đó.
Trong hầu hết trường hợp thực tế, tần số sóng mang cao hơn rất nhiều so với thí dụ trên.
Biến đổi F của s(t) được vẽ ở hình 4.7 ( Xem phụ lục chương II )
- Khi sóng mang bằng 1 ( t =
Hình 4.7: Ảnh Fourier của s(t)
Biến đổi F của sóng biến điệu được tính nhờ định lý biến điệu.
S(f - 10) + S(f + 10)
Sm(f) =
2
Trang IV.5
(4.7)
Cơ Sở Viễn Thông
Phạm Văn Tấn
Hình 4.8: Tần phổ của sóng biến điệu
Vì Sm (f) được suy từ S(f) bằng cách dời tất cả các thành phần tần số của s(t) một khoảng là
fC, ta sẽ có thể hồi phục lại s(t) từ sm(t) bằng cách dời các tần số bởi cùng một trị theo chiều
ngược lại.
Định lý biến điệu chứng tỏ rằng phép nhân một hàm thời gian với một hàm Sinusoide sẽ
dời ảnh F của hàm thời gian đi ( cả chiều lên và xuống ) trong miền tần số. Vậy nếu ta lại nhân
Sm(t) với một hàm sin ( tần số sóng mang ), thì ảnh F sẽ dời lui xuống đến tần số thấp của nó.
Phép nhân này cũng dời ảnh F lên đến 1 vị trí giữa khoảng 2fC, những thành phần này dễ dàng
bị loại bởi một lọc hạ thông. Tiến trình này vẽ ở hình 4.9.
Sự hồi phục của s(t) được mô tả bởi phương trình (4.8)
sm(t). cos 2πfCt = [ s(t) cos 2πfCt ] cos 2πfCt
= s(t) cos2 2πfCt
s( t ) + s(t )cos 4πf C t
=
(4.8)
2
Ngỏ ra lọc hạ thông là s(t ) /2
sm(f)
Hình 4.9: Sự hồi phục tín hiệu từ sóng biến điệu.
Tiến trình này gọi là hoàn điệu ( Demodulation ).
BIẾN ĐIỆU BIÊN ĐỘ SÓNG MANG ĐƯỢC TRUYỀN 2
BĂNG CẠNH
( Double - Side Band Transmitted Carrier AM ). DSBTCAM.
Bây giờ ta cải biến thêm sự biến điệu AM, bằng cách cộng vào sóng biến điệu một phần
của sóng mang.
Trang IV.6
Cơ Sở Viễn Thông
Phạm Văn Tấn
s(t)
Hình 4.10.
Hình 4.10 chỉ sự cộng một sóng mang hình sin thuần túy vào sóng biến điệu DSBSCAM.
Kết quả cho bởi phương trình (4.8)
sm(t) = s(t) cos 2πfCt + A cos 2πfCt
(4.9)
Đây là kiểu biến điệu AM sóng mang được truyền 2 băng cạnh. ( DSBTC AM). Khác với
kiểu AM sóng mang bị nén 2 kiểu AM sóng mang được truyền có chứa một thành phần rỏ ràng
của sóng mang ( A cos 2πfCt ).
Ảnh F của TCAM là tổng của biến đổi F của SCAM và biến đổi F sóng mang thuần túy.
Biến đổi sóng mang là một cặp xung lực ± fC.
Hình 4.11: Biến đổi F của TCAM
Dạng sóng có thể viết lại ( Từ phương trình 4.9 )
sm(t) [A+s(t)] cos 2πfCt
(4.10)
Hàm này có thể vẽ theo cách vẽ dạng sóng SCAM. Trước hết, ta vẽ đường biên [A+s(t)] và
ảnh qua gương -[ A + s(t)]. Sóng AM chạm tuần hoàn vào 2 đuờng biên và thay đổi biên độ điều
giữa những điểm tuần hoàn đó. Hình vẽ 4.12, cho một s(t) hình sin ( thí dụ tiếng huýt sáo vào
một microphone ).
- Hình 4.12a Tín hiệu s(t) hình sin
- Hình 4.12b Dạng sóng DSBTCAM với giá trị của A nhỏ hơn biên độ a của s(t); A
A≠0.
- Hình 4.12c Dạng sóng DSBTCAM khi A lớn hơn biên độ của s(t); A>a; A≠0.
- Hình 4.12d Dạng sóng DSBTCAM khi A=0.
Trang IV.7