Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (38.36 MB, 898 trang )
OF AVERAGING D A T A (continued)
T A B L E 16.-METHODS
38
of which, as representative bracketed L 1 coefficients, we have
[atat] = alal azaz a3a3 .. .a,,a,
[acbrl= a161 a262 a3b3 . .anBn
[ a l X l l = a,X, azXz aaX3 . .anXn
+ + +
+ + +.
+ + +.
(3)
.....................................
[ktatl = klal + hzaz + k3a3+ ...knan
Solutions of equation (2) yield'the least-squares adjusted values of
Qi,
Qz...ex.
For unequally weighted values of X , that is wl, wz,. . .wnfor X , X z . . .Xn, the rrornral
equations become
+
+
[ w t a ~ a t l Q ~ [wtatbtlQ2
[ ~ i b c a < l Q i [wtDtbtlQZ
+ [zvtatctIQ3+.. . [ W C ~ ~ -~ ~[wcatXtl
I Q X =0
+ [ ~ , b t ~ i l Q+..
3 .[ ~ r b t l ~ ~ l [Q~ ~t b t X i=
l 0
(4)
.....................................................................
+
+
+.
~w~k~aclQ
[ wl l h ~ b t l Q z I W ~ ~ ~ C ..~twthtktlQkI Q ~
of which
[ w t a d = zphalal
[zv~acbtl
= walbl
+ w z ~ a+z w3a3a3+ ...wnana8,
+ zfia2bY+ w3a3b3+. . .twnanbn
IwtkcXtl = 0
(5)
............................................
[wtk+atl= wlklal + wIkza2+ w3ksar+. . .wnknan
The weights wl, m . . .w,, associated with the Xi, X Z . . . X , and with the successive observation equations are taken as inversely proportional to the squares of the probable
errors (or of the standard deviations) of the corresponding X's. It is customary to take
simple rounded numbers for the proportional values. A precise set of 28, 50, 41, and 78
may be rounded to 3, 5, 4, and 8.
As a simple application, consider the elevations of stations B, C, and D above A. Let
those elevations in order be Q1, Q2,and Q3. Let the quantities measured and the observed
elevations be such as to yield the following observation equations :
Qz - Q 3 -12 ft = A5
Qi - Q3 - 5 ft = A6
Th coefficients al, b ~ and
,
are obvious. Substitution
are seen to be 1, 0, and 0. The values of the other coefficients
equation (2) yields for the normal equations
3Qz- Q a Q36ft=O
(7)
- Qi 3 Q 2 - Q 3 - 39 ft = O
- Qi - Q z 3Q3 13 ft = 0
+
+
+
Solutions of equation ( 7 ) yield 91 ft, 174 ft, and 44 ft for the elevations of B, C, and D
above A.
P a r t 2.-Least-squares
+ bx,
equations of the type y = a
observed (x,y) values
to represent a series of
For equally weighted pairs of (x,y) of which the errors of measurement are associated
with the determinations of the y's
of which
SMITHSDNIAN PHYSICAL TABLES
T A B L E 16.-METHODS
OF A V E R A G I N G D A T A (concluded)
39
The probable errors of the a and the b of equation (8) are given by
For unequally weighted measurements of which the errors of measurement are associated with the determinations of the y's,
Z w l x i l Z w , y i - Z w ix & v i xt y i
a=
Z z w Z w l x l z - (Zzehxr ) Z
Where the erroi s of measurement are associated with the x-determination only, the corb'y can be obtained by merely
responding coefficients of an equation of the type x = a'
interchanging x and y in equation ( 8 ) .
Where the errors of measurement are associated with both the x - and the y- determinations, the expressions are complicated."
+
Worthing, A. G . , and Geffner, J., Trcatment of experimental data, p. 259, John Wiley and Sons,
New York, 1943. Used by permmion.
+
+ cxz + dx3 to
equation of the type y = a
bx
series o f observed (x, y ) values
P a r t 3.-Least-squares
represent a
For the general case involving irregularly spaced x-values, the formulae for a, b, c , etc.,
are very complex." However, for the case of equally weighted observations with errors
of measurement associated entirely with the y-values in which succeeding x-values are
equally spaced, the mechanics of the computations for least-squares constants are very
greatly simplified, thanks to tables computed by Baily and by Cox and Matuschak.Ia The
procedure requires a change of the x-variable to yield a new X-variable with a zero-value
at the midpoint of the series. I n case of an even number of terms, the shift is given by
x-x
4x
-
X,= -
(11)
of which Ax is the even spacing between successive x-values; and, if the number of terms
is odd, the shift is given by
-
x o = x4x/2
--x
(12)
The further procedure consists in determining the appropriate summations indicated in
Table 17, the appropriate k-terms given as a function of the number of terms n in Tables 19
and 20, combining the appropriate summations and k-terms, to give parameters for the
equation y = f ( X ) , and finally transferring the function to the original coordinate system
to yield y = f i ( x ) .
How to apply the simplified procedure to determine the coefficient of x2 in the leastcxz to represent the xy values of the first two columns of
squares equation y = a bx
the following tabulations is shown in the remainder of the tabulation.
+ +
X
L
(set)
(cm)
3
6
9
12
15
18
12.0
20.6
33.7
51.1
72.9
99.1
_-
x
-5
-3
-1
1
3
+
+
+5
289.4
-X2Y
(cm)
300.0
185.4
33.7
51.1
656.1
2477.5
-__
3703.8
C' = k5ZX2y - krZy
n=6
k5 = 16,741,071 X
k 4 = 19,531,250X lo-*
kJZX2y= 6.2005 cm
krZy = 5.6523 cm
c' = 0.5482 cm
Ax = 3 sec
c = 4c'i ( A x ) = 0.244 cm/sec2
67, 1YZI; Worthing, A. G . ,
I4 Birge, R . T., and Shea, J. D., Univ. California Puhl. Math., vol. 2,
and Geffner. J., Treatment of experimental data, p. 250, John Wiley and gins, New York, 1943.
Baily, J. L., Ann. Math. Statistics, vol. 2, p. 355, 1931.
'"Cox, G. C., and Matuschak, Margaret, Journ. Phys. Chem., vol. 45, p. 362, 1941.
SMITHSONIAN PHYSICAL TABLES
40
T A B L E 17.-SHOWING
T H E MAKE-UP O F T H E CONSTANTS O F T H E LEASTSQUARES EQUATION O F T H E T Y P E y = a
bx
cx2 dxS FOR EQUATIONS OF VARYING DEGREES W H E N T H E ABBREVIATED M E T H O D O F
BAILEY AND O F COX AND MATUSCHAK IS U S E D *
+ +
+
This method is applicable only when succeeding values of x have a common difference
and a r e equally weighted. T h e independent variable, changed if necessary, must have a
zero value at the midpoint of the series with succeeding values differing by unity if the
number of terms is odd and by two if even. Values for the various k's, as computed by
Cox and Matuschak, are to be found in Tables 14 and 20.
.
J'or
references, see footnotes 15 and 16, P. 39.
L U ES O F P =
TABLE 18.-VA
s
P, the probability of an observational error having a value positive or negative equal to
hZ
or less than x when h is the measure of precision, P =
e-'"''zd(hx) * I t a = (tntax')
v'T
0
where nz = no. obs. of deviation A x .
hx
0.0
.I
.2
.3
.4
0.5
.6
.7
.8
.9
1.o
.1
.2
.3
.4
1.5
.6
.7
.8
.9
2.0
.I
.2
.3
.4
2.5
.6
.7
.8
.9
0
1
4
,01128 .02256 .03384 .04511 ,05637 ,06762
.11246 ,12362 .I3476 .I4587 .I 5695 .16800 .I7901
,22270 .23352 24430 .25502 .26570 .27633 .28690
.32863 .33891 .34913 .35928 .36936 ,37938 ,38933
.42839 .43797 .44747 .45689 .46623 .47548 ,48466
7
8
9
.07886 .09008 .lo128
.I8999 .20094 .21184
,29742 ,30788 ,31828
,39921 .40901 ,41874
,49375 .SO275 51167
2
3
5
6
.52050
,60386
.67780
.74210
.79691
.52924
.61168
,68467
.74800
.80188 ,80677
3 4 9 4 .56332 ,57162
.63459 ,64203 ,64938
.70468 .71116 .71754
.76514 ,77067 .77610
,81156 .81627 32089 ,82542
,57982 ,58792 .59594
,65663 .66378 ,67084
.72382 ,73001 ,73610
,78144 ,78669 .79184
,82987 .83423 ,83851
.84270
.88021
.91031
.93401
,95229
.84681 .85084
.a353 .88679
.91296 .91553
,93606 .93807
.95385 .95538
3.5478 .85865
188997 .89308
.91805 .92051
.94002 .94191
.95686 ,95830
.86977
90200
.92751
.94731
,96237
.86244
,89612
,92290
,94376
.95970
,86614
.89910
.92524
,94556
,96105
.96611 ,96728
,97635 .97721
.98379 .98441
.98909 .98952
39279 ,99309
.96841
.97804
.98500
.98994
.99338
.96952
.97884
.98558
.99035
,99366
.97059
.97962
.98613
.99374
.99392
,99532
.99702
,99814
.99886
.99931
.99572
,99728
,99831
.99897
.99938
99591
.99741
.99839
.99902
.99941
.99609 ,99626 .99642
9 7 5 3 .99764 ,99775
,99846 .99854 ,99861
.99906 9 9 11 9 9 1 5
.99944 .99947 .99950
,99552
,99715
.99822
.99891
.99935
,97162 .97263
.98038 .98110
,98667 .98719
,99111 ,99147
.99418 ,99443
.87333
,90484
,92973
.94902
.96365
,87680
90761
,93190
.95067
.96490
,97360 ,97455 ,97546
.98181 ,98249 ,98315
.98769 .98817 .98864
,99182 .99216 ,99248
,99466 .99489 ,99511
,99658
.99785
.99867
.99920
,99952
,99673
,99795
,99874
.99924
,99955
.99688
,99805
,99880
.99928
.99957
99.59 ,99961 .99963 .99965 .99967 ,99969 .99971 .99972 .99974 .99975
99976 .99978 ,99979 .99980 .99981 .99982 ..99983 .99984 ,99985 .99986
9 9 8 7 .99987 ,99988 .99989 .99989 .99s50 . 9 W 1 ,99991 ,99992 .99992
.99992 .99993 ,99993 .99994 .99994 .99994 .99995 .99995 .99995 ,99996
99996 S9996 999% .99997 ,99997 .99997 .99997 ,99997 .99997 .99998
.99998
3.0
-
.99999
.99999 1.00000
SMITHSONIAN PHYSICAL TABLES
v)
5
4
B
T A B L E 19.-VALUES
O F T H E CONSTANTS, k,, E N T E R I N G LEAST-SQUARES SOLU TION S, U SIN G T H E A B B R E V I A T E D
M E T H O D O F B A I L Y A N D O F COX A N D M A T U S C H A K , W H E N T H E N U M B E R OF TER MS, n, IS O D D *
z
z
D
Q
5
T h e numbers in parentheses show the negative powers of 10 by which the adjacent numbers must he multiplied in order to obtain appropriate 12"'s.
To illustrate, 1 : ~for I G = 13 is 54,945,055 x lo-''.
ka
4
D
I
Im
(D
3
- 5
n 7
9
11
k4
kx
h
kG
3333 3333(8)
2000 0000
1428 5714
1111 1111
9090 9091(9)
so00 OOOO(8)
1000 0000
3571 4286(9)
1666 6667' '
9090 9091(10)
1000 OOOO(7)
4857 1429(8)
3333 3333
2554 1126
2074 5921
1000 0000(7',
1428 5714(6,
4761 9048(9)
2164 5022
1165 5012
1500 OOOO(7)
7142 8571(9)
1190 4762
3246 7532(10)
1165 5012
9027 7778(8)
2625 6614
1143 3782
6037 9435(9)
2361
3240
8277
2881
1111(8)
7407(9)
2166(10)
3779
6944 4444(9)
4629 6296(10)
7014 5903(11)
1618 7516
13
15
17
19
21
7692
6666
5882
5263
4761
5494 5055
3571 4286
2450 9803
1754 3860
1298 7013
1748 2517
1511 3122
1331 2693
1189 7391
1075 5149
6993 0070(10)
4524 8869
3095 9752
2211 4109
1634 5211
4995 0050(11)
2424 0465
1289 9897
7371 3696(12)
4457 7848
3584 6098
2304 5899
1570 2041
1118 3168
8248 9 7 0 ( 10)
1214 0637
5830 6799 ( 11)
3081 6420
1752 5617
1056 2015
4856 2549(12)
1745 7125
7166 6093(13)
3257 5497
1605 1694
23
25
27
29
31
4347 8261
4000 0000
3703 7037
3448 2759
3225 8065
9881
7692
6105
4926
4032
9813
9024
8352
7774
7270
6646(9)
1546
4904
0700
7048
1242 2360
%51 8357(11)
7662 8352
6179 7058
5056 1230
2823 2637
1858 0453
1263 1047
8828 1512(13)
6320 1537
6259
4862
3852
3104
2538
6672
4382
2974
2076
1485
8445
4692
2728
1650
1032
33
35
37
39
41
3030
2857
2702
2564
2439
3342 2460
2801 1204
2370 7918
2024 2915
1742 1603
6828
6437
6088
5775
5493
6552
3464
5061
5692
2589
4189
3510
2970
2535
2181
4620 6166
3441 1799
2605 2658
2001 6066
1558 2829
2102 4471
1760 7811
1489 3734
1271 0408
1093 4097
1084 7991
8073 4407(13)
6108 7522
4691 0081
3650 4910
6655 2091(15)
4402 0942
2979 8791
2059 2661
1449 7581
43
45
47
49
51
-
2325 5814
2222 2222
2127 6596
2040 8163
1960 7843
1510 1178
1317 5231
1156 3367
1020 4082
9049 7738(12)
5237
5004
4790
4595
4414
2849
1234
8525
0295
5960
1890 7166
1649 3485
1447 3875
1277 1066
1132 5285
1227 7380
9778 7451 (14)
7866 2362
6385 5329
5227 0545
9474
8263
7250
6396
5671
2875 1015
2289 2527
1841 0171
1494 1103
1222 7830
1037 9428
7545 3288( 16)
5561 9852
4152 6134
3136 9497
3077
6667
3529
1579
9048
3030
1429
7027
1026
0244
4229( 11)
3077
0061
1084
2581
For references. see footnotes 15 and 16. 1). 39
3590
0035
0030
3684
5961
0791
3545
7423
7316
6983
1490(11)
1159
1033
2170
3855
0719(12)
3595
5336
4076
0296
6606(14)
0337
9299
5625
7049