Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (38.36 MB, 898 trang )
48
T A B L E PB.-GENERAL
Part 3.-Additional
P H Y S I C A L CONSTANTS ACCORDING T O BlRGE
(continued)
quantities evaluated or used in connection with Part 1
..........
Ratio of esu to emu (direct).
c' = (2.99711 f 0.0001) X l(Yo cm'/' set"/' ohm'/*
= (2.9978, 2 O.OOOlo) X 10" cm/sec
Ratio of esu to emu (indirect). ...... .c' = c = (2.99776 f0.0004) X 10'' cm/ser
Average density of earth.. ............6 = 5.517 f0.004 p/cm'
Maximum density of water. ....am(H20) = 0.999S2 2 0.000002 g/cm'
Acceleration of gravity (standard). ... .go = 980.665 cm/sec'
Acceleration of gravity (45"). ........ g =
~ 980.616 cm/sec?
Density of oxygen gas (OOC, A ) .... .L1= 1.42897 f0.0003 g/liter
Limiting density of oxygen gas (OOC, A K )
L t i m = 1.427609 2 0.000037 g/liter
Factor converting oxygen (O'C, All)
to ideal gas.. ..................1 - a = l.OOO953s2 0.000009,
Specific gravity of H g (O'C, Ao) referred to air-free water at maximum
density ..........................
.po = 13.59542 f 0.00005
Density of Hg (0°C. A ) .............DO= 13.59504f 0.00005, g/cm8
Electrochemical equivalents (chemical
scale) :
Silver (apparent) .............EA, = (1.11800 -t0.00012) x 10-'g/int coul
(corrected) .............E A , = (1.11807 2 0.00012) x
g/abs coul
Iodine (apparent) ..............E I = (1.315026 fO.oooO25) x lo-*g/int coul
(corrected) ..............E I = (1.31535 f0.00014) x lo-* g/abs coul
Effective calcite grating space ( W C )
d"a = 3.02904 X lo-' cm
Siegbahn system
True calcite grating space (20°C). .. . # Z O = 3.029512 X 10.' cm
Siegbahn system
True calcite grating space (20°C). . . .dm = (3.0356742 0.00018) X 10-'cm
cgs system
Ratio of grating and Siegbahn scales of
wavelengths ...................X I / L = 1.002034 f0.000060
Density of calcite (20°C). ............. p = 2.71029 U0.00003 g/cm*
Structural constant of calcite (20°C). . = 1.09594 2 0.00001
Molecular weight of calcite (chemical
- - - - - - -. naos
- --.M = inn.091.f
scale) ...........................
Rydberg constant for hydrogen (HI). .RH = 109677.5812f 0.007, cm-' (LA. scale)
Rydberg constant for deuterium (H') . .RD= 109707.419af0.0076 cm-' (I.A. scale)
Rydberg constant for helium.. ......R I I ,= 109722.263 -C 0.012 cm-' (I.A. scale)
Rydberg constant for infinite mass. ...R, = 109737,303& 0.017 cm-' (LA. scale\
or f 0.05 cm-' (cgs system)
.*
SMITHSONIAN PHYSICAL TABLES
49
P H Y S I C A L C O N S T A N T S A C C OR D IN G T O B I R G E
(continued)
T A B L E 26.-GENERAL
list o f derived quantities
P art 4.-Partial
,= {
Planck's constant :
{
27r7Fs }1/3
R,No (e/+iz)
........... = (6.62422 0.002,)
R
}
.......
It/e
=
h/e'
= I t / ( e c ) = Rx N2r2F2
o ' ( C / tit)
1/3.
{
'I3
erg sec
X
z (4.134g02 0.00071)
x
lo-' erg sec abs emu-'
= (1.3793, 2 0.0002,)
x
lo-'' erg sec abs esu-'
Atomic weight of electron : ...........E = F / ( c / n z )
(Physical scale) ..................= (5.4862, 2 0.0017) X lo-,
(Chemical scale) ..................= (5.48175 f 0.0017) X lo-'
Band spectra constant connecting wave
number and moment of inertia :
1"(8*2r) =
..... = (27.98,,
{
2 O.Ol0) X lo-'' g c m
Boltzmann constant :
I< = Ro/.Vo= Y o A U / ( T o N o........
).
= (1.38047, 2O.ooO26) X lO-"'erg/deg
Charge in electrolysis of 1 gram of H
F/H = 9572.1,,
f 1.0
abs. emujg
Charge in electrolysis of one gram of
H' ...........................
c/M,,' = I; H' = 9573.5,f
1.0 abs emu/g
Compton shift at 90" :
Energy i n ergs of one abs volt-electron:
E o = 106c = 108F/Zio .............. = (1.60203, 2 0.00034) X lo-'* erg
Energy in calories per mole for one abs volt-electron per molecule:
F(abs coul/gram-equiv.)
........... = 23052.85 2 3.2 call:, mole-'
J15(absjoules/cal)
Fine structure constant :
a
{
= 2x(e')'/(hr) = 4aRxF(c'1r2'}
N O
= (7.2976, f 0.0008.) x lo-'
l / a = 137.030, & 0.016
'a = (5.3255 2 0.0013) X
Gas constant per mole:
Ro = I'oA,/T, . . . . . . . . . . . . . . . . . . . = (8.31436 f 0.00038) X 10' erg deg-' mole-'
RIo= K,, x 10-'/115 . . . . . . . . . . . . . . . = 1.98646, 2 0.00021 call:, deg-' mole-'
1 atm deg-' mole-'
R'Io= Iv',/To.....................
= (8.20544, & 0.00037) X
R"' - RolAu= V , / T , ............ = 82.0566; f 0.0037 cms atm deg-' mole-'
also :
ROTo= I'oA, .....................
= (2.27115"f 0.00006) X 10'" erg mole-'
Loschmidt number (O"C, A0)riu= hro/V0.= (2.6870,t
hfagnetic moment of one Bohr magneton :
p1
* 0.00050)X 10'" molecules/cm3
= (Iz/4a)(e/m) =
= (0.9273,,
2 O.CO03,) X lo-% erg/gauss
Magnetic moment per mole for one Bohr
magneton per molecule :
{
}
1 2 7 r ' ~ ~ F ~ ( ~ / i' Ii 3
i )......
~
= 5585.2, f 1.6 erg gauss-' mole-'
,u1!V0= 4n
Rr No'
Mass of a-particle. . M a = ( H e - 2E)/No = (6.61422 f 0.0012) X lo-'' g
(corttirlurd)
SMITHSONIAN PHYSICAL TABLES
50
T A B L E 26.-GENERAL
P H Y S I C A L CONSTANTS ACCORDING
(concluded)
TO BlRGE
Mass of atom of unit atomic weight,
Mo = 1/No = (1.66035 2 0.00031) X lo-" g
Mass of electron ;
m = e/(e/m) = (F/No)/(e/m) = (9.1066, f 0.0032) X lo-" g
Mass of H' atom.. ...... . M H =
~ H'/No = (1.673393 0.0031) X lo'" g
Mass of proton.. ... . M P = (H'- E)/No = (1.672482f 0.00031) X lo-" g
*
Ratio mass H' atom to mass electron:
MHl/m = (e/m)(H'/F) ........... = 1837.5,, f 0.5,
Ratio mass proton to mass electron :
M,/m = ( e / m (H') ( T E)
) . ........
= 1836.56, 2 0.56
First radiation constant. ....cl** = 8rhc = (4.9908 f 0.0024) X lo-'' erg cm
= hcP = (0.59542 f 0.0024) >( 10.' erg cm2 sec-'
=2 ~ h =
2 (3.7403 0.0024) x lo-' erg cm2 sec-'
Second radiation constant :
cz
{
= hc/k = -
*
2rF6
VoAo RmNo(elm)
= 1.43848 f 0.00034 cm deg
}1/3
Specific charge of a-particle :
2F
................. = 4522.3s 2 0.5, abs emu/g
2e/M aHe-2E
~
Specific charge of proton :
e/Mp =
F
................... = 9578.77 f 1.0 abs emu/g
Radiation density constant,
a = 8r6k'/(15c'hs)
=
4rraNoRm(e/m) ............ - (7.56942f0.004#) X lo-= erg cm-' deg-'
(?)
15c'F
Stefan-Boltzmann constant : t
VoA
......... = (*)
rsNoR,(e/m)
15( F C ) ~
= (5.67283f 0.003,) X 10.' erg cm-' deg-' sec-'
Wien's displacement-law constant. ... . A = c2/4.965114= 0.28971, 2 0.00007 cm deg
Wavelength associated with 1 abs volt.
ko = 10-'c2(h/e') = c2
2
= (12395.. 2 2 4 x lo-' cm abs volt
10' RmNo(elm)
Wave number associated with 1 abs volt :
SO = 1/)b = lo8 RmN'(e/m)}'/3
2*2FZ
= 8067.4, '-+ 1.4 cm/abs volt
u = a c / 4 = 2r6k4/(15cah8)
{
C2
4
>;,
{
Zeeman displacement per gauss ( e / m ) / ( 4 ~ c )= 4.669g1 f 0.0013) X lO-'cm/gauss
**.
may
I,be defined in several ways and this determines the value of cl. If J,dX gives the energy
density of unpolarized radiation in range dX, then c l = 8nhc. If J,dX gives the emission of linearly
polarized light, in range dX per unit solid angles perpendicular to the surface, then c1= hc'. If this
expression J,dX denotes the emission of radiation in range dX, per unit surface from one side i n all
directions (2n solid angle) then cl = 2ahcz. See Table 53.
t For 2a solid angle.
Part 5.-Birge's
1944 values o f 3 constants
e, Electronic charge.. .................. = (4.8021 f 0.0006) X lo-" abs esu
Nu, Avogadro number.. ................ = (6.02338 f 0.00043) X 10" molecules mole-'
(chemical scale)
F, Faraday constant.. .................. = 96487.7 f 10 abs coul
(chemical scale)
SMlTHSONlAN PHYSICAL TABLES
51
T A B L E 27.-TABLE
O F L E A S T S Q U A R E S A D J U S T E D O U T P U T V A L U E S OF
P H Y S I C A L C O N S T A N T S ( B Y D u M O N D A N D ASSOCIATES)
(November 1952)
Part 1.-Auxiliary
constants used
These auxiliary constants are quantities which are uncorrelated (observationally) with
the variables of the least-squares adjustment.
Rydberg wave number for infinite mass. RE= 109737.309 f 0.012 cm-'
Rydberg wave numbers for the light nuclei
RH= 109677.576 f 0.012 cm-'
RD = 109707.419 f 0.012 cm-'
RH=
, ~109717.345 f 0.012 cm-'
Rne4= 109722.267 f 0.012 cm-'
Atomic mass of neutron.. ............. n = 1.008982 f0.000003
Atomic mass of hydrogen.. ...........H = 1.008142 2 0.000003
Atomic mass of deuterium.. .......... D = 2.014735 f 0.000006
Gas constant per mole (physical scale). R, = (8.31662 f 0.0003S) X 10' erg mole-' deg-'C
Standard volume of a perfect gas
(physical scale) ...................Y o= 22420.7 f 0.6 cms atmos-' mole-'
Part 2.-Least-squares
adjusted output values
(The quantity following each f sign is the standard error by external consistei;cy)
Velocity of light.. .................... c = 299792.9 f 0.8 km sec-'
Avogadro's constant (physical scale). ..N = (6.02472 f 0.00036) X 10'' (molecules mot)-'
Loschmidt's constant (physical scale). . . .
Lo= N/V0 = (2.68713 f 0.00016) x 10'Dmoleculescm-'
Electronic charge ....................
. e = (4.80288 2 0.00021) X lO-'Oesu
e' = e / c = (1.60207 f0.00007) j (
emu
Electron rest mass. ...................m = (9.1085 f0.0006) X lo-" g
Proton rest mass. . . . . . . . . . . .mp = M,/N = (1.67243 2 0.00010) x lo-" g
Neutron rest mass.. ..........m, = ?1/N = (1.67474 f 0.00010) x lo-'' g
erg sec
Planck's constant .................... h = (6.6252 t 0.0005) X
erg sec
4i = h / ( 2 * ) = (1.05444 2 0.00009) x
Conversion factor from Siegbahn X-units
to milliangstroms .............. .Xl/h, = 1.002063 f 0.000034
Faraday constant (physical scale) I; = N e = (2.89360 f0.00007) X 10" esu (g mot)"
F' = N e / c = (9652.01 -C 0.25) emu (gm mot)-'
Charge-to-mass ratio of the electron. . e / m = (5.27299 2 0.00016) x 1O''esu g-'
e'/m = e / ( m c ) = (1.7588 2 0.00005) x lO'emu g-'
h / e = (1.37943 C 0.00005) X lo-'' erg sec (em)-'
Ratio h / e ..........................
Fine structure constant ...... a = e2/(%r)= (7.29726 t 0.00008) x
l / a = 137.0377 2 0.0016
a j 2 r = (1.161396 f 0.000013) X
a* = (5.32501 f0.00012) X
1 - (1 - a')? = (0.266254 2 0.000006) X
Atomic mass of the electron (physical
scale) ........................... N m = (5.48760 2 0.00013) X lo-'
Ratio of mass of hydrogen to mass of
proton a
H/H'=
[ 1 - N-(Hm
1 - $ a Z ) ] - l = 1.000544610 f 0.000000013
Atomic mass of proton.. ............H' = 1.007593 f0.000003
Ratio of proton mass to electron mass.. .
H+/Nni = 1836.13 C 0.04
Reduced mass of electron in hydrogen
atom .................... p = mH+/H = (9.1035 f 0.0006) X
Schrodinger constant for a fixed nucleus
g
2ndV = (1.63844 f 0.00016) x 10" erg-' cm-'
Schrodinger constant for the hydrogen
atom .........................
. 2 p / V = (1.63755 f 0.00016) x 10" erg-' cm-'
First Bohr radius.. ........ao = P/(me') = (5.29171 2 0.00006) X IO-'cm = a/(47rRE)
* T h e binding energy of the electron in the hydrogen atom has been included in the quantity. The
mass of the electron when f o u n d in the hydrogen atom is not m but more correctly m ( 1 - 1 / 2 a'+ ' .).
(continued)
SMITHSONIAN PHYSICAL TABLES
52
T A B L E 27.-TABLE
O F LEAST-SQUARES A D J U S T E D O U T P U T V A L U E S O F
P H Y S I C A L C O N S T A N T S (continued)
Radius of electron orbit in normal H',
referred to center of mass.. ..........
a' = ao(l - a')* = (5.29157 2 0.00006) X lo-' cm
Separation of proton and electron in norma1 H' ..............&" = &' R,/RII = (5.29445 2 0.00006) X 10-Ocm
Compton wavelength of the electron.. . . . .
X,. = h / ( m c ) = (24.2625 2 0.0006) X lo-" cm = a'/(2Rm)
X,. = h c , / ( 2 r ) = (3.86150 2 0.00009) X lO-"cm = a2/(4rRm)
Compton wavelength of the proton. .....
Xe, = h/m,c = (13.2139 f 0.0004) X lo-'' cm
X,, = AeP/(27r)= (2.10307 2 0.00007) X lo-'' cm
Compton wavelength of the neutron.. ...
Xc. = h / n w = (13.1958 f 0.0004) X lo-'' cm
X,. = X,./(ZR) = (2.10017 2 0.00007) X lO-"cm
Classical electron radius.. . .ro= e'/(mc') = (2.81784 -C 0.00010) X 10''scm = a3/(4rR,)
r0*= (7.9402 2 0,0005)
cm'
8
cm'
Thompson cross section.. ......... - ~ ~ =0 (6.65196
2
-C 0.0005) X
3
Fine structure doublet separation in
1
hydrogen ....................... AE - -Raa'
1
(85 - 5.946 a']
'I16
= 0.365869 -f. 0.000008 cm-'
= 10968.49 -C 0.25 Mc sec-'
Fine structure separation in deuterium.. .
A E D= AEII RD/RIi :
0.365969 0.000008 cm-'
= 10971.48 -C 0.25 Mc/sec-'
Zeeman displacement per gauss. ........
(c /m c )/(4~ c )= (4.66879 2 0.00015) X lO"cm-'gauss-'
Boltzmann's constant .........k = Ro/N = (1.38042 -C 0.00010) XlO-''ergs deg-'
k = (8.6164 2 0.0004) 10"ev deg-'
I l k = 11605.7 -C 0.5 deg ev-'
erg cm
First radiation constant. ......c1 = 8 R hc = (4.9919 2 0.0004) X
Second radiation constant. .....c2 = hc/k = (1.43884 -C 0.00008) cm deg
Atomic specific heat constant. .......c z / c = (4.79946 2 0.00027) X lo-'' sec deg
Wien displacement law constant '. .X,,.,T = cJ(4.96511423) = 0.28979 2 0.00005 cm deg
Stefan-Boltzmann constant . ,. ..........
u = (w2/60)(k'/Rc') = (0.56686 rfr 0.00005) X lo-' erg cm-' deg-' sec-'
5
Sackur-Tetrode constant ......... .So/Ro=2 1 n { (2rR0)"' h-' N-'1
- _ 5.57324 f 0.00011
So= - (46.3505 2 0.0017) X 1O'erg mole-' deg-'
Bohr masneton .......................
1
erg gauss-'
p3 7he/(4n mc) = - e X.. = (0.92732 2 0.00006) X
2
Anomalous electron moment correction. ..
1
- 2.973 a' = p./po = 1.001145356 C 0.000000013
x
[ + +
7)
*
x
+
[ +2
73
R
Magnetic moment of the electron. ..... p a = (0.92838 2 0.00006) X lo-" erg gauss-'
Nuclear magneton .....................
p. = hc/(4rmpc) =poNm/H+= 0.505038 -C 0.000036) X lo-= erg gauss-'
Proton moment .....................
. p = 2.79277 -C 0.00006 nuclear magnetons
= (1.41045 2 0.00009) X lo-" erg gauss-'
Gyromagnetic ratio of the proton in hydrogen (uncorrected for diamagnetism)
y' = (2.67520 k 0.00008)X 10' radians sec-' gauss-'
Gyromagnetic ratio of the proton (cor.y = (2.67527 -C 0.00008) X10' radians sec-' gauss-'
rected) ...........................
Multiplier of (Curie constant)* to give
(erg mole deg-')*
magnetic moment per molecule. (3k/N)4 = (2.62178 k 0.00017) X
b
The numerical constant 4.96511423 is the root of the transcendental equation
(continued)
SMITHSONIAN PHYSICAL TABLES
I=
5 (1
-e+).