Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (361.83 KB, 26 trang )
1. Mục đích môn học – Đối tượng
và phương pháp nghiên cứu
1.2 Đối tượng nghiên cứu- lưu chất là gì?
Chất lỏng và chất khí: lưu chất – môi trường liên tục,
quan điểm này cho phép mô tả đặc trưng của lưu chất (áp suất,
vận tốc, nhiệt độ, khối lượng riêng..) tại một điểm (x,y,z) bất kỳ
tại một thời điểm t tùy ý như là các hàm liên tục.
Tính chất ảnh hưởng rõ nét nhất đến sự khác biệt của
chất khí và lỏng là tính nén được – sự thay đổi của khối
lượng riêng. Thông thường, chất lỏng là lưu chất không nén được
(khối lượng riêng là hằng số) và chất khí là lưu chất dễ nén
Lý thuyết về chất lỏng và chất khí tương tự như nhau cho
trường hợp chuyển động với vận tốc thấp khi ảnh hưởng của tính
nén được của lưu chất có thể được bỏ qua
Khi chuyển động ớ vận tốc lớn (số Mach>0.3: vận tốc
chuyển động lớn hơn 0.3 lần vận tốc âm thanh), đặc tính chịu
nén của chất khí có ảnh hưởng quan trọng đến tính chất dòng
chuyển động chất khí được nghiên cứu bằng lý thuyết riêng:
khí động lực học
TYPES OF AERODYNAMIC FLOW
AERODYNAMICS
A. Continuum flow
B. Low-density and freemolecule flows
C. Viscous flow
D. Inviscid flow
E. Incompressible flow
F. Compressible flow
G. Subsonic
flow
H. Transonic
flow
I. Supersonic
flow
J. Hypersonic
flow
1. Mục đích môn học – Đối tượng
và phương pháp nghiên cứu
1.3 Phương pháp nghiên cứu- cơ lưu chất nghiên cứu vấn đề gì?
Ứng xử của lưu chất ở trạng thái tĩnh và động
Ứng xử và tương tác giữa lưu chất và thành rắn/cố thể
• Nội lưu: trường hợp lưu chất được chứa đựng hay bao quanh bởi
thành rắn: bài toán chuyển động lưu chất, chuyển biến năng lượng
của dòng chuyển động thành cơ năng hay nhiệt năng dưới dạng khí
nén, hơi nước, nước nóng…
• Ngoại lưu: trường hợp lưu chất bao quanh cố thể
Trường lưu chất được phân chia thành những phần tử đủ nhỏ để
được xem là đồng nhất, gọi là phần tử lưu chất. Sự trao đổi và tương
tác ớ cấp độ phân tử giữa các phần tử lưu chất kế cận: khối lượng,
động lượng, năng lượng.
Để diễn tả thành các phương trình các hiện tượng trao đổi và tương
tác như trên, chúng ta dựa trên nền tảng các nguyên lý cơ bản của cơ
học cổ điển và nhiệt động lực học:
• Định luật bảo toàn khối lượng (phương trình liên tục)
• Định luật bảo toàn động lượng (định luật II Newton)
• Định luật bảo toàn năng lượng
1. Mục đích môn học – Đối tượng
và phương pháp nghiên cứu
1.3 Phương pháp nghiên cứu- cơ lưu chất nghiên cứu
vấn đề gì?
Phương pháp giải tích: xây dựng cơ sở lý thuyết dựa
trên đặc tính về hình học và các giả thiết tính toán (lưu chất
không ma sát, không nén được…) để giải các phương trình
bảo toàn lý thuyết nghiên cứu cổ điển, ứng dụng cho một
số vấn đề cụ thể
Phương pháp tính toán mô phỏng số: giải các phương
trình bảo toàn cho các bài toán phức tạp mà phương pháp
giải tích không thực hiện được nhờ sự phát triển mạnh mẽ
của máy tính và các công cụ tính toán
Phương pháp thực nghiệm: sử dụng kết quả thực
nghiệm, phân tích tổng hợp để đưa ra các quy luật mô tả
trạng thái và ứng xử của lưu chất công thức thực nghiệm,
bổ sung cho lý thuyết và giúp chúng ta kiểm chứng các lời
giải bằng phương pháp giải tích và phương pháp số
The bigger picture – The three equal partner of
modern aerodynamics
Pure
experiment
Pure theory
Computational
Fluid Dynamics
2. Các tính chất vật lý cơ bản của lưu chất
2.1 Khối lượng riêng – Trọng lượng riêng – Tỷ trọng
Khối lượng riêng ρ của một chất là mật độ khối lượng
trong một đơn vị thể tích của chất đó
∆m m
mass − M
kg
ρ = lim
= =
= 3
3
∆V → 0 ∆V
V [length − L]
m
Trọng lượng riêng γ của một chất là lực trọng trường tác
dụng lên khối lượng của một đơn vị thể tích chất đó
γ =[kg/m3.m/s2]=[N/m3]
= g g=9.81m/s2 – gia tốc trọng trường
Tỷ trọng δ là tỷ số giữa trọng lượng riêng γ của một chất
với trọng lượng riêng của nước ở điều kiện tiêu chuẩn (20 oC)
γ
ρ
δ = γ / γ H 2O
Nước
Thủy ngân
Không khí
ρ [kg/m3]
1000
13600
1.228
γ [N/m3]
9.81.103
133.103
12.07
Khối lượng riêng phụ thuộc vào trạng thái của lưu chất:
áp suất, nhiệt độ
2. Các tính chất vật lý cơ bản của lưu chất
2.2 Tính nhớt – tính chất ma sát của lưu chất
Tính nhớt là tính chất đặc trưng cho lực cản ma sát
chống lại chuyển động. Đây là tính chất quan trọng chỉ
thể hiện khi lưu chất chuyển động (Động học lưu
chất>
Để diễn tả tính chất này bằng một đại lượng vật lý,
nhà khoa học COUETTE đã xây dựng một thí nghiệm đo
tính nhớt
2. Các tính chất vật lý cơ bản của lưu chất
2.2 Tính nhớt – tính chất ma sát của lưu chất
Thí nghiệm COUETTE
Phân tích thực nghiệm cho
thấy, ứng suất (lực/một đơn vị
diện tích) tỉ lệ thuận với vận
tốc kéo U và tỉ lệ nghịch với
khoảng cách h theo một hằng
số tỉ lệ gọi là μ
F
U
τ = =µ
A
h
Khi vận tốc dịch chuyển của tấm phẳng trên đủ nhỏ, lưu chất chuyển
động mà không hòa trộn vào nhau, thành từng lớp mỏng song song với
mặt phẳng – chuyển động tầng. Lớp trên tương tác với lớp dưới qua ma
sát và truyền cho nó một vận tốc giảm dần theo khoảng cách giữa hai
tấm phẳng
Phân bố vận tốc theo quy luật tuyến tính
2. Các tính chất vật lý cơ bản của lưu chất
2.2 Tính nhớt – tính chất ma sát của lưu chất
F
U
τ = =µ
A
h
Định luật Newton
dU
τ
τ =µ
⇒µ=
dy
dU
dy
dU
dy
Biến thiên vận tốc theo
phương vuông góc với
chuyển động (phương y)
2. Các tính chất vật lý cơ bản của lưu chất
2.2 Tính nhớt – tính chất ma sát của lưu chất
Một cách tổng quát : Định luật Newton (áp dụng cho
chuyển động tầng)
dU
τ
τ =µ
⇒µ=
dy
dU
dy
dU
dy
N / m2
= N .s / m 2 = [ Pa.s ]
µ=
[ m / s / m]
µ [ N .s / m 2 ]
=
= [m 2 / s ]
ν =
ρ [kg / m3 ]
Biến thiên vận tốc theo
phương vuông góc với
chuyển động (phương y)
hệ số nhớt động lực học
(1poise=0.1Pa.s)
hệ số nhớt động học (1stoke=10-4m2/s)
Nước
Không khí
μ, poise
1.10-2
1.8.10-4
γ, stoke
0.01
0.15
2. Các tính chất vật lý cơ bản của lưu chất
2.2 Tính nhớt – tính chất ma sát của lưu chất
Phân loại lưu chất:
• Lưu chất Newton: hầu hết
lưu chất có hệ số nhớt
μ=const. Lưu chất có hệ số
nhớt không phụ thuộc biến
thiên vận tốc du/dy
• Lưu chất phi Newton: lưu
chất có hệ số nhớt phụ
thuộc vào biến thiên vận tốc
(gradient vận tốc) du/dy