Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (797.46 KB, 81 trang )
71
[9]
Hatzivassiloglou V. and McKeown K. (1997), “Predicting the Semantic
Orientation of Adjectives”, in Proceedings of the Joint ACL/EACL Conference,
papes 174-181.
[10]
Hu M. and Liu B. (2004), “Mining and summarizing customer reviews”, in
Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD), pages 168–177.
[11]
Joachims T. (1998), “Text categorization with Support Vector Machines:
Learning with many relevant features”, in Proc. of the European Conference on
Machine Learning (ECML), pages 137–142
[12]
König A. and Brill E. (2006), “Reducing the Human Overhead in Text
Categorization”, in Proceedings of the ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD).
[13]
Liu B., Hu M., and Cheng J. (2005), “Opinion Observer: Analyzing and
Comparing Opinions on the Web”, in Proceedings of WWW.
[14]
Liu B. (2010), Sentiment Analysis and Subjectivity, in Handbook of Natural
Language Processing, Vol. 2nd ed.
[15]
McCallum A. and Nigam K. (1998), "A comparison of event models for Naive
Bayes text classification", in Proc. of the AAAI-98 Workshop on Learning for
Text Categorization, pages 41–48.
[16]
Morinaga S., Yamanishi K., Tateishi K., and Fukushima T. (2002), “Mining
product reputations on the web”, in Proceedings of the ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD), pages 341–349.
[17]
Mullen T. and Collier N. (2004), “Sentiment Analysis using Support Vector
Machines with Diverse Information Sources”, in Proc. of Conference on
Empirical Methods in Natural Language Processing (EMNLP‟04).
72
[18]
O'Keefe T. and Koprinska I. (2009), “Feature selection and weighting methods
in sentiment analysis”, in Proceedings of the Fourteenth Australasian
Document Computing Symposium (ADCS‟09).
[19]
Pang B., Lee L., and Vaithyanathan S. (2002), “Thumbs up? Sentiment
Classification Using Machine Learning Techniques”, in Proc. of Conference on
Empirical Methods in Natural Language Processing (EMNLP‟02).
[20]
Pang B. and Lee L. (2004), “A sentimental education: Sentiment analysis using
subjectivity summarization based on minimum cuts”, in Proceedings of the
Association for Computational Linguistics (ACL), pages 271–278.
[21]
Pang B. and Lee L. (2008), Opinion mining and sentiment analysis,
Foundations and Trends in Information Retrieval 2(1-2), pp. 1–135.
[22]
Prabowo R. and Thelwal M. (2009), “Sentiment analysis: a combined
approach”, in Journal of Informetrics.
[23]
Riloff E., Wiebe J., and Wilson T. (2003). “Learning subjective nouns using
extraction pattern bootstrapping”, in Walter Daelemans and Miles Osborne,
editors, Proceedings of CONLL-03, 7th Conference on Natural Language
Learning, pages 25–32, Edmonton, CA.
[24]
Su F. and Markert K. (2009), “Subjectivity recognition on word senses via
semi-supervised mincuts”, in Proceedings of Human Language Technologies:
The 2009 Annual Conference of the North American Chapter of the Association
for Computational Linguistics (NAACL '09).
[25]
Tang H., Tan S., and Cheng X. (2009), “A survey on sentiment detection of
reviews”, Expert Systems with Applications, Vol. 36, No. 7, pages 1076010773.
[26]
Turney P. D., and Littman M. L. (2002), “Unsupervised learning of semantic
orientation from a hundred-billion-word corpus”, Technical Report ERB-1094.
National Research Council Canada, Institute for Information Technology.
73
[27]
Turney P. D., and Littman M. L. (2003), “Measuring praise and criticism:
Inference of semantic orientation from association”. ACM Transactions on
Information Systems (TOIS), 21(4), 315–346.
[28]
Yang C. C., Tang X., Wong Y. C., and Wei C. (2010), “Understanding Online
Consumer Review Opinions with Sentiment Analysis using Machine Learning”
Pacific Asia Journal of the Association for Information Systems, vol.2, no.3.
[29]
Yang Y. and Pederson J. O. (1997), “A Comparative Study on Feature
Selection in Text Categorization”. In Proceedings of ICML-97, 14th
International Conference on Machine Learning.
[30]
Yu H. and Hatzivassiloglou V. (2003), “Towards Answering Opinion
Questions: Separating Facts from Opinions and Identifying the Polarity of
Opinion Sentences”, in Proc. Of Intl. Conf. on Empirical Methods for Natural
Language Processing (EMNLP‟03).
74
PHỤ LỤC
PHỤ LỤC A: CHƢƠNG TRÌNH THỬ NGHIỆM
M n ìn c ín của c ƣơng trìn SOAnalysis
M n ìn min
ọa kết quả p ân tíc cảm ng ĩ bằng t uật toán SVM
75
Màn hình min
ọa lọc các câu c ủ quan c o bộ dữ liệu cảm ng ĩ
Màn hình min
ọa t ử ng iệm các kết quả p ân lớp cảm ng ĩ khác nhau