1. Trang chủ >
  2. Khoa học xã hội >
  3. Văn hóa - Lịch sử >

TÀI LIỆU THAM KHẢO

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (797.46 KB, 81 trang )


71



[9]



Hatzivassiloglou V. and McKeown K. (1997), “Predicting the Semantic

Orientation of Adjectives”, in Proceedings of the Joint ACL/EACL Conference,

papes 174-181.



[10]



Hu M. and Liu B. (2004), “Mining and summarizing customer reviews”, in

Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and

Data Mining (KDD), pages 168–177.



[11]



Joachims T. (1998), “Text categorization with Support Vector Machines:

Learning with many relevant features”, in Proc. of the European Conference on

Machine Learning (ECML), pages 137–142



[12]



König A. and Brill E. (2006), “Reducing the Human Overhead in Text

Categorization”, in Proceedings of the ACM SIGKDD Conference on

Knowledge Discovery and Data Mining (KDD).



[13]



Liu B., Hu M., and Cheng J. (2005), “Opinion Observer: Analyzing and

Comparing Opinions on the Web”, in Proceedings of WWW.



[14]



Liu B. (2010), Sentiment Analysis and Subjectivity, in Handbook of Natural

Language Processing, Vol. 2nd ed.



[15]



McCallum A. and Nigam K. (1998), "A comparison of event models for Naive

Bayes text classification", in Proc. of the AAAI-98 Workshop on Learning for

Text Categorization, pages 41–48.



[16]



Morinaga S., Yamanishi K., Tateishi K., and Fukushima T. (2002), “Mining

product reputations on the web”, in Proceedings of the ACM SIGKDD

Conference on Knowledge Discovery and Data Mining (KDD), pages 341–349.



[17]



Mullen T. and Collier N. (2004), “Sentiment Analysis using Support Vector

Machines with Diverse Information Sources”, in Proc. of Conference on

Empirical Methods in Natural Language Processing (EMNLP‟04).



72



[18]



O'Keefe T. and Koprinska I. (2009), “Feature selection and weighting methods

in sentiment analysis”, in Proceedings of the Fourteenth Australasian

Document Computing Symposium (ADCS‟09).



[19]



Pang B., Lee L., and Vaithyanathan S. (2002), “Thumbs up? Sentiment

Classification Using Machine Learning Techniques”, in Proc. of Conference on

Empirical Methods in Natural Language Processing (EMNLP‟02).



[20]



Pang B. and Lee L. (2004), “A sentimental education: Sentiment analysis using

subjectivity summarization based on minimum cuts”, in Proceedings of the

Association for Computational Linguistics (ACL), pages 271–278.



[21]



Pang B. and Lee L. (2008), Opinion mining and sentiment analysis,

Foundations and Trends in Information Retrieval 2(1-2), pp. 1–135.



[22]



Prabowo R. and Thelwal M. (2009), “Sentiment analysis: a combined

approach”, in Journal of Informetrics.



[23]



Riloff E., Wiebe J., and Wilson T. (2003). “Learning subjective nouns using

extraction pattern bootstrapping”, in Walter Daelemans and Miles Osborne,

editors, Proceedings of CONLL-03, 7th Conference on Natural Language

Learning, pages 25–32, Edmonton, CA.



[24]



Su F. and Markert K. (2009), “Subjectivity recognition on word senses via

semi-supervised mincuts”, in Proceedings of Human Language Technologies:

The 2009 Annual Conference of the North American Chapter of the Association

for Computational Linguistics (NAACL '09).



[25]



Tang H., Tan S., and Cheng X. (2009), “A survey on sentiment detection of

reviews”, Expert Systems with Applications, Vol. 36, No. 7, pages 1076010773.



[26]



Turney P. D., and Littman M. L. (2002), “Unsupervised learning of semantic

orientation from a hundred-billion-word corpus”, Technical Report ERB-1094.

National Research Council Canada, Institute for Information Technology.



73



[27]



Turney P. D., and Littman M. L. (2003), “Measuring praise and criticism:

Inference of semantic orientation from association”. ACM Transactions on

Information Systems (TOIS), 21(4), 315–346.



[28]



Yang C. C., Tang X., Wong Y. C., and Wei C. (2010), “Understanding Online

Consumer Review Opinions with Sentiment Analysis using Machine Learning”

Pacific Asia Journal of the Association for Information Systems, vol.2, no.3.



[29]



Yang Y. and Pederson J. O. (1997), “A Comparative Study on Feature

Selection in Text Categorization”. In Proceedings of ICML-97, 14th

International Conference on Machine Learning.



[30]



Yu H. and Hatzivassiloglou V. (2003), “Towards Answering Opinion

Questions: Separating Facts from Opinions and Identifying the Polarity of

Opinion Sentences”, in Proc. Of Intl. Conf. on Empirical Methods for Natural

Language Processing (EMNLP‟03).



74



PHỤ LỤC

PHỤ LỤC A: CHƢƠNG TRÌNH THỬ NGHIỆM

M n ìn c ín của c ƣơng trìn SOAnalysis



M n ìn min



ọa kết quả p ân tíc cảm ng ĩ bằng t uật toán SVM



75



Màn hình min



ọa lọc các câu c ủ quan c o bộ dữ liệu cảm ng ĩ



Màn hình min



ọa t ử ng iệm các kết quả p ân lớp cảm ng ĩ khác nhau



Xem Thêm
Tải bản đầy đủ (.pdf) (81 trang)

×