1. Trang chủ >
  2. Khoa Học Tự Nhiên >
  3. Hóa học - Dầu khí >

G. SOLVOTHERMAL OXIDATION OF METALS

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (24.38 MB, 737 trang )


56



Chemical Processing of Ceramics, Second Edition



H. SOLVOTHERMAL REDUCTION

As discussed in Section 2, organic solvents have inherent reducing ability. Figlarz

et al.5 first reported the formation of noble metal particles as well as nickel and

cobalt particles by the reaction in ethylene glycol. They called this method the

“polyol process,” and by combining this method with microwaves, Komarneni et

al.212–214 synthesized a variety of metal nanoparticles very rapidly. The reducing

abilities of organic solvents are also utilized for the synthesis of metal oxides. A

typical example is the synthesis of Fe3O4 from Fe(III) precursors. Synthesis of

γ-Mn2O3 by the reaction of MnO2 in ethanol215,216 or KMnO4 in CH3OH or

CH3CH2OH217 has also been reported.



REFERENCES

1. Jones, R.W., Fundamental Principles of Sol-gel Technology, Institute of Metals,

Brookfield, VT, 1989.

2. Jeffrey, C.B., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing,

Academic Press, Boston, 1990.

3. Inoue, M., Kondo, Y., and Inui, T., Chem. Lett., 1421, 1986.

4. Demazeau, G., High Press. Res., 18, 203, 2000.

5. Figlarz, M., Fievet, F., and Lagier, J.P., presented at the International Meeting on

Advanced Materials, Tokyo, Japan, May 30–June 3, 1988, Nikkan Kogyo Shinbun,

Ltd., Tokyo, Japan, 1988.

6. Silvert, P.-Y., Herrera-Urbina, R., and Tekaia-Elhesisen, K., J. Mater. Chem., 7,

293, 1997.

7. Inoue, M., Tanino, H., Kondo, Y., and Inui, T., J. Am. Ceram. Soc., 72, 352, 1989.

8. Inoue, M., Otsu, H., Kominami, H., and Inui, T., J. Am. Ceram. Soc., 74, 1452,

1991.

9. Yu, S.-H., J. Ceram. Soc. Jpn., 109, S65, 2001.

10. Rajamathi, M., and Seshadri, R., Curr. Opin. Solid State Mater. Sci., 6, 337, 2002.

11. Demazeau, G., J. Mater. Chem., 9, 15, 1999.

12. Qian, Y., Adv. Mater., 11, 1101, 1999.

13. Bibby, D.M., and Dale, M.P., Nature (London), 317, 157, 1985.

14. Bowes, C.L., and Ozin, G.A., Adv. Mater., 6, 13, 1996.

15. Day, V.W., Klemperer, W.G., and Yaghi, O.M., J. Am. Chem. Soc., 111, 5959, 1989.

16. Spandl, J., Brüdgam, I., and Hartl, H., Angew. Chem. Int. Ed., 40, 4018, 2001.

17. Inoue, M., Kondo, Y., and Inui, T., Inorg. Chem., 27, 215, 1988.

18. Yu, S.-H., and Yoshimura, M., Adv. Mater., 14, 296, 2002.

19. Jiang, Y., Wu, Y., Zhang, Xu, C., Yu, W., Xie, Y., and Qian, Y., J. Am. Chem. Soc.,

122, 12283, 2000.

20. Hu, G., Cheng, M., Ma, D., and Bao, X. Chem. Mater., 15, 1470, 2003.

21. Inoue, M., Nishikawa, T., Otsu, H., Kominami, H., and Inui, T., J. Am. Ceram.

Soc., 81, 1173, 1998.

22. Chen, S.-J., Chen, X.-T., Xue, Z., Li, L.-H., and You, X.-Z., J. Cryst. Growth,

246, 169, 2002.



© 2005 by Taylor & Francis Group, LLC



Solvothermal Synthesis



57



23. Stupp, S.I., and Braun, P.V., Science, 277, 1242, 1997.

24. Patzke, G.R., Krumeich, F., and Nesper, R., Angew. Chem. Int. Ed., 41, 2446, 2002.

25. Yu, S.-H., Shu, L., Yang, J., Han, Z.-H., Qian, Y.-T., and Zhang, Y.-H., Chem.

Phys. Lett., 361, 362, 2002.

26. Wei, C., Deng, Y., Lin, Y.-H., and Nan, C.-W., Chem. Phys. Lett., 372, 590, 2003.

27. Yu, S.-H., Yang, J., Qian, Y.-T., and Yoshimura, M., Chem. Phys. Lett., 361, 362,

2002.

28. Yoshimura, M., and Somiya, S., Am. Ceram. Soc. Bull., 59, 246, 1980.

29. Hirano, S., Am. Ceram. Soc. Bull., 67, 1342, 1987.

30. Dawson, W.J., Am. Ceram. Soc. Bull., 67, 1673, 1988.

31. Walton, R.I., Chem. Soc. Rev., 31, 230, 2002.

32. Yamasaki, N., J. Ceram. Soc. Jpn., 111, 709, 2003.

33. Jacobs, H., and Stuve, C., J. Less Common Met., 96, 323, 1984.

34. Su, H.L., Xie, Y., Li, B., Liu, X.M., and Qian, Y.T., Solid State Ionics, 122, 157,

1999.

35. Demazeau, G., Goglio, G., Denis, A., and Largeteau, A., J. Phys. Condens. Matter,

14, 11085, 2002.

36. Purdy, A.P., Chem. Mater., 11, 1648, 1999.

37. Bialowons, H., Müller, M., and Müller, B.G., Anorg. Allg. Chem., 621, 1227, 1995.

38. Koerts, T., Deelen, M.J.A.G., and van Santen, R.A., J. Catal., 138, 101, 1992.

39. Li, B., Xie, Y., Su, H., Qian, Y., and Liu, X., Solid State Ionics, 120, 251, 1999.

40. Spencer, P.S., Kim, M.S., and Sabri, M.I., Int. J. Hyg. Environ. Health, 205, 131,

2002.

41. Xie, Y., Qian, Y.T., Wang, W.Z., Zhang, S.Y., and Zhang, Y.H., Science, 272, 1926,

1996.

42. Hu, J.Q., Lu, Q.Y., Tang, Yu, S.H., Qi, Y.T., Zhou, G., and Liu, X.M., J. Am.

Ceram. Soc., 83, 430, 2000.

43. Barj, M., Bocquet, J.F., Chhor, K., and Pommier, C., J. Mater. Sci., 27, 2187, 1992.

44. Inoue, M., Kimura, M., and Inui, T., Adv. Sci. Technol., 16, 593, 1999.

45. Gao, S., Zhang, J., Zhu, Y.-F., and Che, C.-M., New J. Chem., 24, 739, 2000.

46. Fanelli, A.J., and Burlew, J.V., J. Am. Ceram. Soc., 69, C-174, 1986.

47. Willard, H.H., and Tang, N.K., J. Am. Chem. Soc., 59, 1190, 1937.

48. Larcher, D., Gérand, B., and Tarascon, J.-M., J. Solid State Elecrochem., 2, 137,

1998.

49. Wang, D., Yu, R., Kumada, N., and Kinomura, N., Chem. Mater., 11, 2008, 1999.

50. Larcher, D., Sudant, G., Patrice, R., and Tarascon, J.-M., Chem. Mater., 15, 3543,

2003.

51. Richardson, J.W., Jr., Pluth, J.J., Smith, J.V., Dytrych, W.J., and Bibby, D.M., J.

Phys. Chem., 92, 243, 1988.

52. Liao, W., Wang, J., and Li, D., Mater. Lett., 57, 1309, 2003.

53. Wei, G., Deng, Y., and Nan, C.-W., Chem. Phys. Lett., 367, 512, 2003.

54. Konishi, Y., Kawamura, T., and Asai, S., Ind. Eng. Chem. Res., 32, 2888, 1993.

55. Derouane, E.G., Ed., Zeolite Microporous Solids: Synthesis, Structure, and Reactivity, Kluwer, Dordecht, 1992.

56. Suib, S.L., Annu. Rev. Mater. Sci., 26, 131, 1996.

57. Han, Z., Guo, N., Li, F., Zhang, W., Zhao, H., and Qian, Y., Mater. Lett., 48, 99,

2001.



© 2005 by Taylor & Francis Group, LLC



58



Chemical Processing of Ceramics, Second Edition

58. Physical and Theoretical Chemistry Laboratory, Safety (MSDS) data for hydrazine

hydrate, Oxford University, http://physchem.ox.ac.uk/MSDS/HY/hydrazine_

hydrate.html.

59. Laine, R.M., Treadwell, D.R., Mueller, B.L., Bickmore, C.R., Waldner, K.F., and

Hinklin, T.R., J. Mater. Chem., 6, 1441, 1996.

60. Waldner, K.F., Laine, R.M., Dhumrongvaraporn, C.R., Tayaniphan, S., and Narayanan, R., Chem. Mater., 8, 2850, 1996.

61. Kansal, P., Laine, R.M., and Babonneau, F., J. Am. Ceram. Soc., 80, 2597, 1997.

62. Sutorik, A.C., Neo, S.S., Treadwell, D.R., and Laine, R.M., J. Am. Ceram. Soc.,

81, 1477, 1998.

63. Yu, S.-H., Wu, Y.-S., Yang, Han, Z.-H., Xie, Y., Qian, Y.-T., and Liu, X.M., Chem.

Mater., 10, 2309, 1998.

64. Yu, S.-H., Yang, J., Wu, Han, Z.-H., Lu, J., Xie, Y., and Qian, Y.-T., J. Mater.

Chem., 8, 1949, 1998.

65. Yu, S.-H., Han, Z.-H., Yang, J., Yang, R.-Y., Xie, Y., and Qian, Y.-T., Chem. Lett.,

1111, 1988.

66. Salta, J., Chang, Y.-D., and Zubieta, J., J. Chem. Soc., Chem. Commun., 1039,

1994.

67. Finn, R.C., and Zubieta, J., J. Cluster Sci., 11, 461, 2000.

68. Khan, M.I., Tabussum, S., and Doedens, R.J., Chem. Commun., 532, 2003.

69. Riddick, J.A., Bunger, W.B., and Sakano, T.K., Organic Solvent: Physical Properties and Methods of Purification, 4th ed., John Wiley & Sons, New York, 1986.

70. Amis, E.S., and Hinton, J.F., Solvent Effects on Chemical Phenomena, Academic

Press, New York, 1973.

71. Matheson Tri-Gas, Inc., Material safety data sheet, http://www.matheson-trigas.com/msds/MAT07770.pdf.

72. Inoue, M., Kitamura, K., Tamino, H., Nakayama, H., and Inui, T., Clays Clay

Miner., 37, 71, 1989.

73. Kubo, T., and Uchida, K., Kogyo Kagaku Zasshi (J. Ind. Chem. Soc. Jpn.), 73,

70, 1970.

74. Hedvall, J.A., Adv. Catal., 8, 1, 1956.

75. Gitzen, W.H., Alumina as a Ceramic Material, American Ceramic Society, Columbus, OH, 1970.

76. Goodman, J.F., Proc. R. Soc., A247, 346, 1958.

77. de Boer, J.H., Fortuin, J.M.H., and Steggerda, J.J., Konikl Ned. Acad. Wetenschap.

Proc., 57B, 170, 1954.

78. de Boer, J.H., Fortuin, J.M.H., and Steggerda, J.J., Konikl Ned. Acad. Wetenschap.

Proc., 57B, 435, 1954.

79. Inoue, M., Kitamura, K., and Inui, T., J. Chem. Tech. Biotechnol., 46, 233, 1989.

80. Yin, S., Uchida, S., Fujishiro, Y., Aki, M., and Sato, T., J. Mater. Chem., 9, 1191,

1999.

81. Yin, S., Wu, J., Aki, M., and Sato, T., Int. J. Inorg. Mater., 2, 325, 2000.

82. Yin, S., Uchida, S., Aki, M., and Sato, T., High Press. Res., 20, 121, 2001.

83. Inoue, M., Tanino, H., Kondo, Y., and Inui, T., Clays Clay Miner., 39, 151, 1991.

84. Bradley, D.C., Prog. Inorg. Chem., 2, 303, 1960.

85. Inoue, M., Kondo, Y., Kominami, H., Tanino, H., and Inui, T., Nippon Kagaku

Kaishi (J. Chem. Soc. Jpn.), 1339, 1991.

86. Ginsberg, H., and Koster, M., Z. Anorg. Allgem. Chem., 293, 204, 1957.



© 2005 by Taylor & Francis Group, LLC



Solvothermal Synthesis



59



87. Yamaguchi, G., Yanagida, H., and Fujimaru, T., Bull. Chem. Soc. Jpn., 38, 54,

1965.

88. Fyfe, W.S., and Hollander, M.A., Am. J. Sci., 262, 709, 1964.

89. Inoue, M., Kimura, M., Kominami, H., Tanino, H., and Inui, T., 72nd National

Meeting of the Chemical Society of Japan, Tokyo, March 1997, abstract no.

1BY09.

90. Arai, Y., Yasue, T., and Yamaguchi, I., Hippon Kagaku Kaishi (J. Chem. Soc. Jpn.),

1395, 1972.

91. Bell, N.S., Cho, S.-B., and Adair, J.H., J. Am. Ceram. Soc., 81, 1411, 1998.

92. Cho, S.-B., Venigalla, S., and Adair, J.H., J. Am. Ceram. Soc., 79, 88, 1996.

93. Bell, N.S., and Adair, J.H., J. Cryst. Growth, 203, 213, 1999.

94. Hitchman, M.L., and Jensen, K.F., Chemical Vapor Deposition: Principles and

Applications, Academic Press, London, 1993.

95. Inoue, M., Kominami, H., and Inui, T., J. Am. Ceram. Soc., 75, 2597, 1992.

96. Inoue, M., Kominami, H., and Inui, T., Appl. Catal. A: General, 97, L25, 1993.

97. Inoue, M., Kominami, H., Otsu, H., and Inui, T., Nippon Kagaku Kaishi (J. Chem.

Soc. Jpn.), 1364, 1991.

98. Kominami, H., Kato, J., Takada, Y., Doushi, Y., Ohtani, B., Nishimoto, S., Inoue,

M., Inui, T., and Kera, Y., Catal. Lett., 46, 235, 1997.

99. Kominami, H., Inoue, M., and Inui, T., Catal. Today, 16, 309, 1993.

100. Kominami, H., Oki, K., Kohno, M., Onoue, S., Kera, Y., and Ohtani, B., J. Mater.

Chem., 11, 604, 2001.

101. Kominami, H., Miyakawa, M., Murakami, Yasuda, T., Kohno, M., Onoue, S.,

Kera, Y., and Ohtani, B., Phys. Chem. Chem. Phys., 3, 2697, 2001.

102. Kominami, H., Onoue, S., Matsuo, K., and Kera, Y., J. Am. Ceram. Soc., 82, 1937,

1999.

103. Kominami, H., Inoue, H., Konishi, S., and Kera, Y., J. Am. Ceram. Soc., 85, 2148,

2002.

104. Yokozawa, M., Iwasa, H., and Teramoto, I., Jpn. J. Appl. Phys., 7, 96, 1968.

105. Okuyama, K., Kousaka, Y., Tohge, N., Yamamoto, S., Wu, J.J., Flagan, R.C., and

Seinfeld, J.H., AIChE J., 32, 2010, 1986.

106. Komiyama, H., Kanai, T., and Inoue, H., Chem. Lett., 1283, 1984.

107. Vioux, A., and Leclercq, D., Heterogen. Chem. Rev., 3, 65, 1996.

108. Arnal, P., Corriu, R.J.P., Leclercq, D., Mutin, P.H., and Vioux, A., Chem Mater.,

9, 694, 1997.

109. Acosta, S., Arnal, P., Corriu, R.J.P., Leclercq, D., Mutin, P.H., and Vioux, A.,

Mater. Res. Soc. Symp. Proc., 346, 339, 1994.

110. Acosta, S., Corriu, R.J.P., Leclercq, D., Lefevre, P., Mutin, P.H., and Vioux, A.,

J. Non-Cryst. Solids, 170, 234, 1994.

111. Corriu, R.J.P., Leclercq, D., Lefevre, P., Mutin, P.H., and Vioux, A., J. Non-Cryst.

Solids, 146, 301, 1992.

112. Acosta, S., Corriu, R.J.P., Leclercq, D., Mutin, P.H., and Vioux, A., J. Sol-Gel Sci.

Technol., 2, 25, 1994.

113. Andrianainarivelo, M., Corriu, R.J.P., Leclercq, D., Mutin, P.H., and Vioux, A.,

J. Mater. Chem., 6, 1665, 1996.

114. Trentler, T.J., Denler, T.E., Bertone, J.F., Agrawal, A., and Colvin, V.L., J. Am.

Chem. Soc., 121, 1613, 1999.

115. Vioux, A., Chem. Mater., 9, 2292, 1997.



© 2005 by Taylor & Francis Group, LLC



60

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.



Chemical Processing of Ceramics, Second Edition

Inoue, M., Kominami, H., and Inui, T., J. Am. Ceram. Soc., 79, 793, 1996.

Okada, K., Otsuka, N., and Somiya, S., Am. Ceram. Soc. Bull., 70, 1633, 1991.

Hoffman, D., Roy, R., and Komarneni, S., J. Am. Ceram. Soc., 67, 468, 1984.

Rockenberger, J., Scher, E.C., and Alivisatos, A.P., J. Am. Chem. Soc., 121, 11595,

1999.

Thimmaiah, S., Rajamathi, M., Singh, Bera, P., Meldrum, F., Chandrasekhar, N.,

and Seshadri, R., J. Mater. Chem., 11, 3215, 2001.

Gautam, U.K., Ghosh, M., Rajamathi, M., and Seshadri, R., Pure Appl. Chem.,

74, 1643, 2002.

Praserthdam, P., Inoue, M., Mekasuwandumrong, O., Thanakulrangsan, W., and

Phatanasuri, S., Inorg. Chem. Commun., 3, 671, 2000.

Mekasuwandumrong, O., Kominsmi, H., Praserthdam, P., and Inoue, M., J. Am.

Ceram. Soc., in press.

Kistler, S.S., J. Phys. Chem., 36, 52, 1932.

Armor, J.N., and Carlson, E.J., J. Mater. Sci., 22, 2549, 1989.

Pajonk, G.M., Appl. Catal., 72, 217, 1991.

Inoue, M., Kimura, M., and Inui, T., Chem. Mater., 12, 55, 2000.

Pommier, C., Chhor, K., Bocquet, J.F., and Barj, M., Mater. Res. Bull., 25, 213,

1990.

Wang, C., Deng, Z.-X., Zhang, G., Fan, S., and Li, Y., Powder Technol., 125, 39,

2002.

Arnal, P., Coriu, R.J.P., Leclercq, D., Llefevre, P., Mutin, P.H., and Vioux, A., J.

Mater. Chem., 6, 1925, 1996.

Takahashi, Y., Suzuki, H., and Nasu, N., J. Chem. Soc. Faraday Trans., 81, 3117,

1985.

Courtecuisse, V.G., Bocquet, J.F., Chhor, K., and Pommier, C., J. Supercrit. Fluids,

9, 222, 1996.

Courtecuisse, V.G., Chhor, K., Bocquet, J.-F., and Pommier, C., Ind. Eng. Chem.

Res., 35, 2539, 1996.

Inoue, M., Kominami, H., and Inui, T., J. Chem. Soc. Dalton Trans., 3331, 1991.

Inoue, M., Kominami, H., and Inui, T., J. Am. Ceram. Soc., 73, 1100, 1990.

Inoue, M., Kominami, H., and Inui, T., J. Mater. Sci., 29, 2459, 1994.

Winstein, S., Allred, E., Heck, R., and Glick, R., Tetrahedron, 3, 1, 1958.

Inoue, M., Adv. Sci. Technol., 29, 855, 2000.

Inoue, M., Sato, K., Nakamura, T., and Inui, T., Catal. Lett., 65, 79, 2000.

Kongwudthiti, S., Praserthdam, P., Tanakulrungsank, W., and Inoue, M., J. Mater.

Proc. Technol., 136, 186, 2003.

Inoue, M., Kominami, H., and Inui, T., Res. Chem. Intermed., 24, 571, 1998.

Inoue, M., Otsu, H., Kominami, H., and Inui, T., Nippon Kagaku Kaishi (J. Chem.

Soc. Jpn.), 1036, 1991.

Kang, M., Lee, S.-Y., Chung, C.-H., Cho, S. M., Han, G. Y., Kim, B.-W., and

Yoon, K. J., J. Photochem. Photobiol, A, 144, 185, 2001.

Inoue, M., Otsu, H., Kominami, H., and Inui, T., J. Alloys Comp., 226, 146, 1995.

Abell, J.S., Harris, I.R., Cockayne, B., and Lent, B., J. Mater. Sci., 9, 527, 1974.

Messier, D.R., and Gazza, G.E., Ceram. Bull., 51, 692, 1972.

Yamaguchi, O., Takeoka, K., Hirota, K., Takano, H., and Hayashida, A., J. Mater.

Sci., 27, 1264, 1992.

Cinibulk, M.K., J. Am. Ceram. Soc., 83, 1276, 2000.



© 2005 by Taylor & Francis Group, LLC



Solvothermal Synthesis



61



149. Kakade, M.B., Ramanthan, S., and Ravindran, P.V., J. Alloys Comp., 350, 123,

2003.

150. Inoue, M., Kominami, H., Otsu, H., and Inui, T., Nippon Kagaku Kaishi (J. Chem.

Soc. Jpn.), 1254, 1991.

151. Kominami, H., Inoue, M., and Inui, T., Nippon Kagaku Kaishi (J. Chem. Soc.

Jpn.), 605, 1993.

152. Cockayne, B., J. Less-Common Met., 114, 199, 1985.

153. Mill', B.V., Soviet Phys.-Crystal., 12, 137, 1967.

154. Kolb, E.D., and Laudise, R.A., J. Cryst. Growth, 29, 29, 1975.

155. Takamori, T., and David, L.D., Am. Ceram. Soc. Bull., 65, 1282, 1986.

156. Inoue, M., Otsu, H., Kominam, H., and Inui, T., J. Mater. Sci. Lett., 14, 1303, 1995.

157. Mizuno, M., and Yamada, T., J. Ceram. Soc. Jpn., 97, 1334, 1989.

158. LaMer, V.K., and Dinegar, R.H., J. Am. Chem. Soc., 72, 4847, 1950.

159. Inoue, M., Nishikawa, T., Nakamura, T., and Inui, T., J. Am. Ceram. Soc., 80,

2157, 1997.

160. Bertaut, F., and Mareschal, J., Compt. Rend., 257, 867, 1963.

161. Inoue, M., Nishikawa, T., and Inui, T., J. Mater. Res., 13, 856, 1998.

162. Inoue, M., Adv. Sci. Tech., 14, 41, 1999.

163. Inoue, M., Nakamura, T., Otsu, H., Kominami, H., and Inui, T., Nippon Kagaku

Kaishi (J. Chem. Soc. Jpn.), 612, 1993.

164. Cruickshank, M.C., and Dent Glasser, L.S., Acta Cryst., C41, 1041, 1985.

165. Laine, R.M., Blohowiak, K.Y., Robinson, T.R., Hoppe, M.L., Nardi, P., Kampf,

J., and Uhm, J., Nature (London), 353, 642, 1991.

166. Day, V.W., Eberspacher, T.A., Frey, M.H., Klemperer, W.G., Liang, S., and Payne,

D.A., Chem. Mater., 8, 330, 1996.

167. Kimura, M., Inoue, M., and Inui, T., 72nd National Meeting of the Chemical

Society of Japan, Tokyo, March 1997, abstract no. 1BY26.

168. Suyama, Y., and Nagasawa, M., J. Am. Ceram. Soc., 77, 603, 1994.

169. Inoue, M., Inoue, N., Yasuda, T., Takeguchi, T., and Iwamoto, S., Adv. Sci. Technol.,

29, 1421, 2000.

170. Takahashi, M., Iwamoto, S., and Inoue, M., Adv. Tech. Mater. Mater. Proc. J, 4,

76, 2002.

171. Inoue, M., Otsu, H., Kominami, H., and Inui, T., Nippon Kagaku Kaishi (J. Chem.

Soc. Jpn.), 1358, 1991.

172. Inoue, M., Nishikawa, T., and Inui, T., J. Mater. Sci. 33, 5835, 1998.

173. Yamaguchi, O., Takeoka, K., and Hayashida, A., J. Mater. Sci. Lett., 10, 101,

1990.

174. Kominami, H., Kohno, M., and Kera, Y., J. Mater. Chem., 10, 1151, 2000.

175. Chen, D., and Xu, R., J. Mater. Chem., 8, 965, 1998.

176. Bocquet, J.F., Chhor, K., and Pommier, C., Mater. Chem. Phys., 57, 273, 1999.

177. Zhao, J., Fan, W., Wu, D., and Sun, Y., J. Mater. Res., 15, 402, 2000.

178. Chen, D., and Jiao, X., J. Am. Ceram. Soc., 83, 2637, 2000.

179. Feldmann, C., and Jungk, H.-O., Angew. Chem. Int. Ed., 40, 359, 2001.

180. Mekelkina, O., Hüsing, N., Pongratz, P., and Schubert, U., J. Non-Cryst. Solids,

285, 64, 2001.

181. Yu, D., Yu, W., Wang, D., and Qian, Y., Thin Sold Films, 419, 166, 2002.

182. Bae, D.-S., Han, K.-S., Cho, S.-B., and Choi, S.H., Mater. Lett., 37, 255, 1998.

183. Chen, D., Jiao, X., and Chen, D., Mater. Res. Bull., 36, 1057, 2001.



© 2005 by Taylor & Francis Group, LLC



62



Chemical Processing of Ceramics, Second Edition



184. Zhang, Y., Xu, G., Yan, Z., Yang, Y., Liao, C., and Yan, C., J. Mater. Chem., 12,

970, 2002.

185. Bae, D.-S., Lim, B., Kim, B.-I., and Han, K.-S., Mater. Lett., 56, 610, 2002.

186. Bae, D.-S., Kim, S.-W., Lee, H.-W., and Han, K.-S., Mater. Lett., 57, 1997, 2003.

187. Pang, G., Sominska, E., Cölfen, H., Mastai, Y., Avivi, S., Koltypin, Y., and Gedanken, A., Langmuir, 17, 3223, 2001.

188. Yin, S., Inoue, Y., Uchida, S., Fujishiro, Y., and Sato, T., Rev. High Press. Sci.

Technol., 7, 1438, 1998.

189. Yin, S., Inoue, Y., Uchida, S., Fujishiro, Y., and Sato, T., J. Mater. Res., 13, 844,

1998.

190. Inoue, Y., Yin, S., Uchda, S., Ishitsuka, M., Min, E., and Sato, T., Br. Ceram.

Trans., 97, 222, 1998.

191. Lu, Q., Chen, D., and Jiao, X., J. Mater. Chem., 12, 687, 2002.

192. Inoue, M., Kominami, H., and Inui, T., Appl. Catal. A, 121, L1, 1995.

193. Kominami, H., Takada, Y., Yamagiw, H., Kera, Y., Inoue, M., and Inui, T., J. Mater.

Sci., 15, 197, 1996.

194. Kominami, H., Murakami, S., Kera, Y., and Ohtani, B., Catal. Lett., 56, 125, 1998.

195. Kominami, H., Kato, J., Takada, Y., Murakami, S., Inoue, M., Inui, T., Ohtani, B.,

and Kera, Y., Ind. Eng. Chem. Res., 38, 3925, 1999.

196. Kominami, H., Oki, K., Kohno, M., Onoue, S., and Kera, Y., J. Mater. Chem., 11,

604, 2001.

197. Kominami, H., Miyakawa, M., Murakam, S., Yoshida, T., Kohno, M., Onoue, S.,

Kera, Y., and Ohtani, B., Phys. Chem. Chem. Phys., 3, 2697, 2001.

198. Lee, S.-H., Kang, M., Cho, S.M., Han, Y., Kim, B.-W., Yoon, K.J., and Chung,

C.-H., J. Photochem. Photobiol., A, 146, 121, 2001.

199. Whittingham, M.S., and Jacobson, A.J., Eds., Intercalation Chemistry, Academic

Press, New York, 1982.

200. Li, W.-J., Shi, E.-W., Chen, Z.-Z., Zhen, Y.-Q., and Yin, Z.-W., J. Solid State

Chem., 163, 132, 2002.

201. Wang, W., Wu, M., and Liu, X., J. Solid State Chem., 164, 5, 2002.

202. Kanno, R., Shirane, T., Kawamoto, Y., Takeda, Y., Takano, M., Ohashi, M., and

Yamaguchi, Y., J. Electrochem. Soc., 143, 2435, 1996.

203. Matsumura, T., Kanno, R., Inaba, Y., Kawamoto, Y., and Takano, M., J. Electrochem. Soc., 149, A1509, 2002.

204. Tabuchi, M., Ado, K., Kobayashi, H., Matsubara, I., Kageyama, H., Wakita, M.,

Tsutsui, S. Nasu, S., Takeda, Y., Masquelier, C., Hirana, A., and Kanno, R., J.

Solid. State Chem., 141, 554, 1989.

205. Song, L., Hu, Y., Wang, S., Chen, Z., and Fan, W., J. Mater. Chem., 12, 3152, 2002.

206. Liu, Z.-H., Ooi, K., Kanoh, H., Tang, W., Yang, X., and Tomida, T., Chem. Mater.,

13, 473, 2001.

207. Torkar, H., Worel, H., and Krischner, H., Monatsh. Chem., 91, 653, 1960.

208. Toraya, H., Yoshimura, M., and Somiya, S., J. Am. Ceram. Soc., 65, C-72, 1982.

209. Inoue, M., Kimura, M., and Inui, T., Chem. Commun., 957, 1999.

210. Inoue, M., Kimura, M., and Inui, T., Ceram. Trans., 108, 53, 2000.

211. Chen, S.-J., Li, L.-H., Chen, X.-T., Xue, Z., Hong, J.-M., and You, X.-Z., J. Cryst.

Growth, 252, 184, 2003.

212. Komarneni, S., Roy, R., and Li, Q.H., Mater. Res. Bull., 27, 1393, 1992.

213. Komarneni, S., Pidugu, R., Li, Q.H., and Roy, R., J. Mater. Res., 10, 1687, 1995.



© 2005 by Taylor & Francis Group, LLC



Solvothermal Synthesis



63



214. Komarneni, S., Li, D., Newalkar, B., Katsuki, H., and Bhalla, A.S., Langmuir, 18,

5959, 2002.

215. Li, W.-J., Shi, E.-W., Chen, Z.-Z., Zhen, Y.-Q., and Yin, Z.-W., J. Solid State

Chem., 163, 132, 2002.

216. He, W., Zhang, Y., Zhang, X., Wang, H., and Yan, H., J. Cryst. Growth, 252, 285,

2003.

217. Zhang, W., Wang, C., Zhang, X., Xie, Y., and Qian, Y., Solid State Ionics, 117,

331, 1999.



© 2005 by Taylor & Francis Group, LLC



3



Mechanochemical

Synthesis of Ceramics

Aaron C. Dodd



CONTENTS

I. Introduction .............................................................................................65

A. Process Description..........................................................................66

B. Milling Systems for Mechanochemical Processing ........................66

C. Powder Contamination.....................................................................67

II. Mechanical Grinding...............................................................................67

III. Mechanical Alloying ...............................................................................67

A. Ferroelectric Perovskites..................................................................68

B. Synthesis of High-Coercivity Ferrite Magnets ...............................68

IV. Reaction Milling .....................................................................................69

A. Reaction Kinetics .............................................................................69

B. Carbide and Nitride Synthesis.........................................................71

C. Mechanochemical Synthesis of Ultrafine Powders.........................71

V. Conclusion...............................................................................................73

References ...........................................................................................................74



I. INTRODUCTION

The kinetics of solid state chemical reactions are ordinarily limited by the rate

at which reactant species are able to diffuse across phase boundaries and through

intervening product layers. As a result, conventional solid state techniques for

manufacturing ceramic materials invariably require the use of high processing

temperatures to ensure that diffusion rates are maintained at a high level, thus

allowing chemical reaction to proceed without undue kinetic constraint.1

Conducting synthesis reactions at high temperatures inevitably leads to the

formation of coarse-grained reaction products due to the occurrence of sintering

and grain growth during processing. Such coarse-grained materials are generally

undesirable for manufacturing advanced engineering ceramics due to their poor

sinterability. Furthermore, the high temperatures required for rapid solid state

chemical reaction can prevent the successful synthesis of materials that are thermodynamically metastable. Consequently there is considerable interest in alter-



65

© 2005 by Taylor & Francis Group, LLC



66



Chemical Processing of Ceramics, Second Edition



native synthesis techniques that either reduce the required processing temperatures or eliminate the need for applied heating altogether.2

The apparent necessity for high processing temperatures in solid state synthesis reactions can be avoided through the use of mechanochemical processing,

which simply entails high-energy milling of a reactant powder charge.3 This has

the effect of inducing chemical changes directly or activating chemical reaction

during subsequent low-temperature heat treatment. This chapter presents an overview of mechanochemical processing and its application within the synthesis and

processing of ceramic materials.



A. PROCESS DESCRIPTION

Mechanochemical processing refers to a range of techniques, which can be

conveniently classified as mechanical grinding, mechanical alloying, and reaction

milling. Although all of these techniques are based on high-energy mechanical

processing, they are distinguished from each other by the nature of the reactant

powder charge and also by the structural and chemical changes that occur during

processing.4

Mechanical grinding specifically refers to milling processes where there is

no change in the chemical composition of the reactant powder charge. Mechanical

alloying refers to the formation of alloys by milling of precursor materials. Finally,

the process termed reaction milling uses high-energy mechanical processing to

induce chemical reactions.



B. MILLING SYSTEMS



FOR



MECHANOCHEMICAL PROCESSING



The most commonly used mill in experimental studies of mechanochemical

processing is the vibratory Spex 8000 mixer/mill. In this mill, the reactant powder

charge and grinding are contained within a cylindrical vial that undergoes rapid

vibratory motion in a “figure-eight” trajectory. The Spex mill is highly energetic,

which allows the use of short milling times.

Another type of mill commonly used in studies of mechanochemical processing is the planetary mill. As implied by the name, the milling container is rotated

about two separate parallel axes in a manner analogous to the rotation of a planet

around the sun. The milling action of a planetary mill is similar to that of a

conventional horizontal tumbling mill. However, the velocity of the grinding

media is not limited by centrifugal forces.

Attritor mills consist of a stationary container filled with grinding balls that

are stirred by impellers attached to a drive shaft. The velocity of the grinding

media in attritor mills is significantly lower than that in planetary or Spex-type

mills and consequently the energy available for mechanochemical processing is

lower. However, unlike planetary and Spex-type mills, attritors are readily amenable to scale-up, which allows mass production of powders through mechanochemical processing.5

© 2005 by Taylor & Francis Group, LLC



Mechanochemical Synthesis of Ceramics



67



C. POWDER CONTAMINATION

A major issue of concern with regard to mechanochemical processing is contamination of the powder charge, since the milling action inevitably results in abrasion

of the grinding media and container. The degree and type of contamination

experienced during mechanochemical processing has been found to depend on a

variety of factors, including the relative hardness of the powder charge and

grinding media, the duration of milling, and the chemical nature of the powder

charge. In general, the extent of such contamination can be limited by minimizing

the milling duration and ensuring that the hardness of the grinding media and

container is greater than that of the powder being milled.

One approach that has been taken for avoiding contamination of the powder

charge from the grinding media and container is to use the same material for the

media and container as at least one of the components of the powder charge.

However, this approach is of limited applicability given the restricted range of

materials that are suitable for the construction of grinding media. Furthermore,

even though contamination by foreign materials is avoided by this method, the

stoichiometry of the final powder will be different from that of the starting powder

charge.6



II. MECHANICAL GRINDING

Mechanical grinding finds extensive use in mineral processing and powder metallurgy for the purposes of particle size reduction and powder blending, However,

mechanical grinding has also found use as a technologically simple means of

inducing structural transformations7 and also for synthesizing nanocrystalline and

amorphous materials.8 In addition, experimental studies have shown that mechanical grinding can also be used to significantly increase the chemical reactivity of

materials during subsequent processing, thus allowing the use of lower processing

temperatures.

High-energy mechanical milling results in severe microstructural refinement

and the accumulation of lattice defects, which can substantially increase the

chemical reactivity of the powder charge. This phenomenon, which is known as

mechanical activation, can be used to enhance the kinetics of solid state synthesis

reactions. For example, Ren et al.9,10 have developed a process, called integrated

mechanical and thermal activation (IMTA), for the synthesis of nanostructured

carbide and nitride ceramic powders. In this process, high-energy milling of the

reactant mixtures allows the use of comparatively low temperatures and short

reaction times during subsequent carbothermic reduction.



III. MECHANICAL ALLOYING

Mechanical alloying was originally developed in the late 1960s at the International

Nickel Company as a means of manufacturing oxide dispersion strengthened

alloys for aerospace applications.6 Since then, the process of mechanical alloying

© 2005 by Taylor & Francis Group, LLC



Xem Thêm
Tải bản đầy đủ (.pdf) (737 trang)

×