Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (24.38 MB, 737 trang )
56
Chemical Processing of Ceramics, Second Edition
H. SOLVOTHERMAL REDUCTION
As discussed in Section 2, organic solvents have inherent reducing ability. Figlarz
et al.5 first reported the formation of noble metal particles as well as nickel and
cobalt particles by the reaction in ethylene glycol. They called this method the
“polyol process,” and by combining this method with microwaves, Komarneni et
al.212–214 synthesized a variety of metal nanoparticles very rapidly. The reducing
abilities of organic solvents are also utilized for the synthesis of metal oxides. A
typical example is the synthesis of Fe3O4 from Fe(III) precursors. Synthesis of
γ-Mn2O3 by the reaction of MnO2 in ethanol215,216 or KMnO4 in CH3OH or
CH3CH2OH217 has also been reported.
REFERENCES
1. Jones, R.W., Fundamental Principles of Sol-gel Technology, Institute of Metals,
Brookfield, VT, 1989.
2. Jeffrey, C.B., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing,
Academic Press, Boston, 1990.
3. Inoue, M., Kondo, Y., and Inui, T., Chem. Lett., 1421, 1986.
4. Demazeau, G., High Press. Res., 18, 203, 2000.
5. Figlarz, M., Fievet, F., and Lagier, J.P., presented at the International Meeting on
Advanced Materials, Tokyo, Japan, May 30–June 3, 1988, Nikkan Kogyo Shinbun,
Ltd., Tokyo, Japan, 1988.
6. Silvert, P.-Y., Herrera-Urbina, R., and Tekaia-Elhesisen, K., J. Mater. Chem., 7,
293, 1997.
7. Inoue, M., Tanino, H., Kondo, Y., and Inui, T., J. Am. Ceram. Soc., 72, 352, 1989.
8. Inoue, M., Otsu, H., Kominami, H., and Inui, T., J. Am. Ceram. Soc., 74, 1452,
1991.
9. Yu, S.-H., J. Ceram. Soc. Jpn., 109, S65, 2001.
10. Rajamathi, M., and Seshadri, R., Curr. Opin. Solid State Mater. Sci., 6, 337, 2002.
11. Demazeau, G., J. Mater. Chem., 9, 15, 1999.
12. Qian, Y., Adv. Mater., 11, 1101, 1999.
13. Bibby, D.M., and Dale, M.P., Nature (London), 317, 157, 1985.
14. Bowes, C.L., and Ozin, G.A., Adv. Mater., 6, 13, 1996.
15. Day, V.W., Klemperer, W.G., and Yaghi, O.M., J. Am. Chem. Soc., 111, 5959, 1989.
16. Spandl, J., Brüdgam, I., and Hartl, H., Angew. Chem. Int. Ed., 40, 4018, 2001.
17. Inoue, M., Kondo, Y., and Inui, T., Inorg. Chem., 27, 215, 1988.
18. Yu, S.-H., and Yoshimura, M., Adv. Mater., 14, 296, 2002.
19. Jiang, Y., Wu, Y., Zhang, Xu, C., Yu, W., Xie, Y., and Qian, Y., J. Am. Chem. Soc.,
122, 12283, 2000.
20. Hu, G., Cheng, M., Ma, D., and Bao, X. Chem. Mater., 15, 1470, 2003.
21. Inoue, M., Nishikawa, T., Otsu, H., Kominami, H., and Inui, T., J. Am. Ceram.
Soc., 81, 1173, 1998.
22. Chen, S.-J., Chen, X.-T., Xue, Z., Li, L.-H., and You, X.-Z., J. Cryst. Growth,
246, 169, 2002.
© 2005 by Taylor & Francis Group, LLC
Solvothermal Synthesis
57
23. Stupp, S.I., and Braun, P.V., Science, 277, 1242, 1997.
24. Patzke, G.R., Krumeich, F., and Nesper, R., Angew. Chem. Int. Ed., 41, 2446, 2002.
25. Yu, S.-H., Shu, L., Yang, J., Han, Z.-H., Qian, Y.-T., and Zhang, Y.-H., Chem.
Phys. Lett., 361, 362, 2002.
26. Wei, C., Deng, Y., Lin, Y.-H., and Nan, C.-W., Chem. Phys. Lett., 372, 590, 2003.
27. Yu, S.-H., Yang, J., Qian, Y.-T., and Yoshimura, M., Chem. Phys. Lett., 361, 362,
2002.
28. Yoshimura, M., and Somiya, S., Am. Ceram. Soc. Bull., 59, 246, 1980.
29. Hirano, S., Am. Ceram. Soc. Bull., 67, 1342, 1987.
30. Dawson, W.J., Am. Ceram. Soc. Bull., 67, 1673, 1988.
31. Walton, R.I., Chem. Soc. Rev., 31, 230, 2002.
32. Yamasaki, N., J. Ceram. Soc. Jpn., 111, 709, 2003.
33. Jacobs, H., and Stuve, C., J. Less Common Met., 96, 323, 1984.
34. Su, H.L., Xie, Y., Li, B., Liu, X.M., and Qian, Y.T., Solid State Ionics, 122, 157,
1999.
35. Demazeau, G., Goglio, G., Denis, A., and Largeteau, A., J. Phys. Condens. Matter,
14, 11085, 2002.
36. Purdy, A.P., Chem. Mater., 11, 1648, 1999.
37. Bialowons, H., Müller, M., and Müller, B.G., Anorg. Allg. Chem., 621, 1227, 1995.
38. Koerts, T., Deelen, M.J.A.G., and van Santen, R.A., J. Catal., 138, 101, 1992.
39. Li, B., Xie, Y., Su, H., Qian, Y., and Liu, X., Solid State Ionics, 120, 251, 1999.
40. Spencer, P.S., Kim, M.S., and Sabri, M.I., Int. J. Hyg. Environ. Health, 205, 131,
2002.
41. Xie, Y., Qian, Y.T., Wang, W.Z., Zhang, S.Y., and Zhang, Y.H., Science, 272, 1926,
1996.
42. Hu, J.Q., Lu, Q.Y., Tang, Yu, S.H., Qi, Y.T., Zhou, G., and Liu, X.M., J. Am.
Ceram. Soc., 83, 430, 2000.
43. Barj, M., Bocquet, J.F., Chhor, K., and Pommier, C., J. Mater. Sci., 27, 2187, 1992.
44. Inoue, M., Kimura, M., and Inui, T., Adv. Sci. Technol., 16, 593, 1999.
45. Gao, S., Zhang, J., Zhu, Y.-F., and Che, C.-M., New J. Chem., 24, 739, 2000.
46. Fanelli, A.J., and Burlew, J.V., J. Am. Ceram. Soc., 69, C-174, 1986.
47. Willard, H.H., and Tang, N.K., J. Am. Chem. Soc., 59, 1190, 1937.
48. Larcher, D., Gérand, B., and Tarascon, J.-M., J. Solid State Elecrochem., 2, 137,
1998.
49. Wang, D., Yu, R., Kumada, N., and Kinomura, N., Chem. Mater., 11, 2008, 1999.
50. Larcher, D., Sudant, G., Patrice, R., and Tarascon, J.-M., Chem. Mater., 15, 3543,
2003.
51. Richardson, J.W., Jr., Pluth, J.J., Smith, J.V., Dytrych, W.J., and Bibby, D.M., J.
Phys. Chem., 92, 243, 1988.
52. Liao, W., Wang, J., and Li, D., Mater. Lett., 57, 1309, 2003.
53. Wei, G., Deng, Y., and Nan, C.-W., Chem. Phys. Lett., 367, 512, 2003.
54. Konishi, Y., Kawamura, T., and Asai, S., Ind. Eng. Chem. Res., 32, 2888, 1993.
55. Derouane, E.G., Ed., Zeolite Microporous Solids: Synthesis, Structure, and Reactivity, Kluwer, Dordecht, 1992.
56. Suib, S.L., Annu. Rev. Mater. Sci., 26, 131, 1996.
57. Han, Z., Guo, N., Li, F., Zhang, W., Zhao, H., and Qian, Y., Mater. Lett., 48, 99,
2001.
© 2005 by Taylor & Francis Group, LLC
58
Chemical Processing of Ceramics, Second Edition
58. Physical and Theoretical Chemistry Laboratory, Safety (MSDS) data for hydrazine
hydrate, Oxford University, http://physchem.ox.ac.uk/MSDS/HY/hydrazine_
hydrate.html.
59. Laine, R.M., Treadwell, D.R., Mueller, B.L., Bickmore, C.R., Waldner, K.F., and
Hinklin, T.R., J. Mater. Chem., 6, 1441, 1996.
60. Waldner, K.F., Laine, R.M., Dhumrongvaraporn, C.R., Tayaniphan, S., and Narayanan, R., Chem. Mater., 8, 2850, 1996.
61. Kansal, P., Laine, R.M., and Babonneau, F., J. Am. Ceram. Soc., 80, 2597, 1997.
62. Sutorik, A.C., Neo, S.S., Treadwell, D.R., and Laine, R.M., J. Am. Ceram. Soc.,
81, 1477, 1998.
63. Yu, S.-H., Wu, Y.-S., Yang, Han, Z.-H., Xie, Y., Qian, Y.-T., and Liu, X.M., Chem.
Mater., 10, 2309, 1998.
64. Yu, S.-H., Yang, J., Wu, Han, Z.-H., Lu, J., Xie, Y., and Qian, Y.-T., J. Mater.
Chem., 8, 1949, 1998.
65. Yu, S.-H., Han, Z.-H., Yang, J., Yang, R.-Y., Xie, Y., and Qian, Y.-T., Chem. Lett.,
1111, 1988.
66. Salta, J., Chang, Y.-D., and Zubieta, J., J. Chem. Soc., Chem. Commun., 1039,
1994.
67. Finn, R.C., and Zubieta, J., J. Cluster Sci., 11, 461, 2000.
68. Khan, M.I., Tabussum, S., and Doedens, R.J., Chem. Commun., 532, 2003.
69. Riddick, J.A., Bunger, W.B., and Sakano, T.K., Organic Solvent: Physical Properties and Methods of Purification, 4th ed., John Wiley & Sons, New York, 1986.
70. Amis, E.S., and Hinton, J.F., Solvent Effects on Chemical Phenomena, Academic
Press, New York, 1973.
71. Matheson Tri-Gas, Inc., Material safety data sheet, http://www.matheson-trigas.com/msds/MAT07770.pdf.
72. Inoue, M., Kitamura, K., Tamino, H., Nakayama, H., and Inui, T., Clays Clay
Miner., 37, 71, 1989.
73. Kubo, T., and Uchida, K., Kogyo Kagaku Zasshi (J. Ind. Chem. Soc. Jpn.), 73,
70, 1970.
74. Hedvall, J.A., Adv. Catal., 8, 1, 1956.
75. Gitzen, W.H., Alumina as a Ceramic Material, American Ceramic Society, Columbus, OH, 1970.
76. Goodman, J.F., Proc. R. Soc., A247, 346, 1958.
77. de Boer, J.H., Fortuin, J.M.H., and Steggerda, J.J., Konikl Ned. Acad. Wetenschap.
Proc., 57B, 170, 1954.
78. de Boer, J.H., Fortuin, J.M.H., and Steggerda, J.J., Konikl Ned. Acad. Wetenschap.
Proc., 57B, 435, 1954.
79. Inoue, M., Kitamura, K., and Inui, T., J. Chem. Tech. Biotechnol., 46, 233, 1989.
80. Yin, S., Uchida, S., Fujishiro, Y., Aki, M., and Sato, T., J. Mater. Chem., 9, 1191,
1999.
81. Yin, S., Wu, J., Aki, M., and Sato, T., Int. J. Inorg. Mater., 2, 325, 2000.
82. Yin, S., Uchida, S., Aki, M., and Sato, T., High Press. Res., 20, 121, 2001.
83. Inoue, M., Tanino, H., Kondo, Y., and Inui, T., Clays Clay Miner., 39, 151, 1991.
84. Bradley, D.C., Prog. Inorg. Chem., 2, 303, 1960.
85. Inoue, M., Kondo, Y., Kominami, H., Tanino, H., and Inui, T., Nippon Kagaku
Kaishi (J. Chem. Soc. Jpn.), 1339, 1991.
86. Ginsberg, H., and Koster, M., Z. Anorg. Allgem. Chem., 293, 204, 1957.
© 2005 by Taylor & Francis Group, LLC
Solvothermal Synthesis
59
87. Yamaguchi, G., Yanagida, H., and Fujimaru, T., Bull. Chem. Soc. Jpn., 38, 54,
1965.
88. Fyfe, W.S., and Hollander, M.A., Am. J. Sci., 262, 709, 1964.
89. Inoue, M., Kimura, M., Kominami, H., Tanino, H., and Inui, T., 72nd National
Meeting of the Chemical Society of Japan, Tokyo, March 1997, abstract no.
1BY09.
90. Arai, Y., Yasue, T., and Yamaguchi, I., Hippon Kagaku Kaishi (J. Chem. Soc. Jpn.),
1395, 1972.
91. Bell, N.S., Cho, S.-B., and Adair, J.H., J. Am. Ceram. Soc., 81, 1411, 1998.
92. Cho, S.-B., Venigalla, S., and Adair, J.H., J. Am. Ceram. Soc., 79, 88, 1996.
93. Bell, N.S., and Adair, J.H., J. Cryst. Growth, 203, 213, 1999.
94. Hitchman, M.L., and Jensen, K.F., Chemical Vapor Deposition: Principles and
Applications, Academic Press, London, 1993.
95. Inoue, M., Kominami, H., and Inui, T., J. Am. Ceram. Soc., 75, 2597, 1992.
96. Inoue, M., Kominami, H., and Inui, T., Appl. Catal. A: General, 97, L25, 1993.
97. Inoue, M., Kominami, H., Otsu, H., and Inui, T., Nippon Kagaku Kaishi (J. Chem.
Soc. Jpn.), 1364, 1991.
98. Kominami, H., Kato, J., Takada, Y., Doushi, Y., Ohtani, B., Nishimoto, S., Inoue,
M., Inui, T., and Kera, Y., Catal. Lett., 46, 235, 1997.
99. Kominami, H., Inoue, M., and Inui, T., Catal. Today, 16, 309, 1993.
100. Kominami, H., Oki, K., Kohno, M., Onoue, S., Kera, Y., and Ohtani, B., J. Mater.
Chem., 11, 604, 2001.
101. Kominami, H., Miyakawa, M., Murakami, Yasuda, T., Kohno, M., Onoue, S.,
Kera, Y., and Ohtani, B., Phys. Chem. Chem. Phys., 3, 2697, 2001.
102. Kominami, H., Onoue, S., Matsuo, K., and Kera, Y., J. Am. Ceram. Soc., 82, 1937,
1999.
103. Kominami, H., Inoue, H., Konishi, S., and Kera, Y., J. Am. Ceram. Soc., 85, 2148,
2002.
104. Yokozawa, M., Iwasa, H., and Teramoto, I., Jpn. J. Appl. Phys., 7, 96, 1968.
105. Okuyama, K., Kousaka, Y., Tohge, N., Yamamoto, S., Wu, J.J., Flagan, R.C., and
Seinfeld, J.H., AIChE J., 32, 2010, 1986.
106. Komiyama, H., Kanai, T., and Inoue, H., Chem. Lett., 1283, 1984.
107. Vioux, A., and Leclercq, D., Heterogen. Chem. Rev., 3, 65, 1996.
108. Arnal, P., Corriu, R.J.P., Leclercq, D., Mutin, P.H., and Vioux, A., Chem Mater.,
9, 694, 1997.
109. Acosta, S., Arnal, P., Corriu, R.J.P., Leclercq, D., Mutin, P.H., and Vioux, A.,
Mater. Res. Soc. Symp. Proc., 346, 339, 1994.
110. Acosta, S., Corriu, R.J.P., Leclercq, D., Lefevre, P., Mutin, P.H., and Vioux, A.,
J. Non-Cryst. Solids, 170, 234, 1994.
111. Corriu, R.J.P., Leclercq, D., Lefevre, P., Mutin, P.H., and Vioux, A., J. Non-Cryst.
Solids, 146, 301, 1992.
112. Acosta, S., Corriu, R.J.P., Leclercq, D., Mutin, P.H., and Vioux, A., J. Sol-Gel Sci.
Technol., 2, 25, 1994.
113. Andrianainarivelo, M., Corriu, R.J.P., Leclercq, D., Mutin, P.H., and Vioux, A.,
J. Mater. Chem., 6, 1665, 1996.
114. Trentler, T.J., Denler, T.E., Bertone, J.F., Agrawal, A., and Colvin, V.L., J. Am.
Chem. Soc., 121, 1613, 1999.
115. Vioux, A., Chem. Mater., 9, 2292, 1997.
© 2005 by Taylor & Francis Group, LLC
60
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
Chemical Processing of Ceramics, Second Edition
Inoue, M., Kominami, H., and Inui, T., J. Am. Ceram. Soc., 79, 793, 1996.
Okada, K., Otsuka, N., and Somiya, S., Am. Ceram. Soc. Bull., 70, 1633, 1991.
Hoffman, D., Roy, R., and Komarneni, S., J. Am. Ceram. Soc., 67, 468, 1984.
Rockenberger, J., Scher, E.C., and Alivisatos, A.P., J. Am. Chem. Soc., 121, 11595,
1999.
Thimmaiah, S., Rajamathi, M., Singh, Bera, P., Meldrum, F., Chandrasekhar, N.,
and Seshadri, R., J. Mater. Chem., 11, 3215, 2001.
Gautam, U.K., Ghosh, M., Rajamathi, M., and Seshadri, R., Pure Appl. Chem.,
74, 1643, 2002.
Praserthdam, P., Inoue, M., Mekasuwandumrong, O., Thanakulrangsan, W., and
Phatanasuri, S., Inorg. Chem. Commun., 3, 671, 2000.
Mekasuwandumrong, O., Kominsmi, H., Praserthdam, P., and Inoue, M., J. Am.
Ceram. Soc., in press.
Kistler, S.S., J. Phys. Chem., 36, 52, 1932.
Armor, J.N., and Carlson, E.J., J. Mater. Sci., 22, 2549, 1989.
Pajonk, G.M., Appl. Catal., 72, 217, 1991.
Inoue, M., Kimura, M., and Inui, T., Chem. Mater., 12, 55, 2000.
Pommier, C., Chhor, K., Bocquet, J.F., and Barj, M., Mater. Res. Bull., 25, 213,
1990.
Wang, C., Deng, Z.-X., Zhang, G., Fan, S., and Li, Y., Powder Technol., 125, 39,
2002.
Arnal, P., Coriu, R.J.P., Leclercq, D., Llefevre, P., Mutin, P.H., and Vioux, A., J.
Mater. Chem., 6, 1925, 1996.
Takahashi, Y., Suzuki, H., and Nasu, N., J. Chem. Soc. Faraday Trans., 81, 3117,
1985.
Courtecuisse, V.G., Bocquet, J.F., Chhor, K., and Pommier, C., J. Supercrit. Fluids,
9, 222, 1996.
Courtecuisse, V.G., Chhor, K., Bocquet, J.-F., and Pommier, C., Ind. Eng. Chem.
Res., 35, 2539, 1996.
Inoue, M., Kominami, H., and Inui, T., J. Chem. Soc. Dalton Trans., 3331, 1991.
Inoue, M., Kominami, H., and Inui, T., J. Am. Ceram. Soc., 73, 1100, 1990.
Inoue, M., Kominami, H., and Inui, T., J. Mater. Sci., 29, 2459, 1994.
Winstein, S., Allred, E., Heck, R., and Glick, R., Tetrahedron, 3, 1, 1958.
Inoue, M., Adv. Sci. Technol., 29, 855, 2000.
Inoue, M., Sato, K., Nakamura, T., and Inui, T., Catal. Lett., 65, 79, 2000.
Kongwudthiti, S., Praserthdam, P., Tanakulrungsank, W., and Inoue, M., J. Mater.
Proc. Technol., 136, 186, 2003.
Inoue, M., Kominami, H., and Inui, T., Res. Chem. Intermed., 24, 571, 1998.
Inoue, M., Otsu, H., Kominami, H., and Inui, T., Nippon Kagaku Kaishi (J. Chem.
Soc. Jpn.), 1036, 1991.
Kang, M., Lee, S.-Y., Chung, C.-H., Cho, S. M., Han, G. Y., Kim, B.-W., and
Yoon, K. J., J. Photochem. Photobiol, A, 144, 185, 2001.
Inoue, M., Otsu, H., Kominami, H., and Inui, T., J. Alloys Comp., 226, 146, 1995.
Abell, J.S., Harris, I.R., Cockayne, B., and Lent, B., J. Mater. Sci., 9, 527, 1974.
Messier, D.R., and Gazza, G.E., Ceram. Bull., 51, 692, 1972.
Yamaguchi, O., Takeoka, K., Hirota, K., Takano, H., and Hayashida, A., J. Mater.
Sci., 27, 1264, 1992.
Cinibulk, M.K., J. Am. Ceram. Soc., 83, 1276, 2000.
© 2005 by Taylor & Francis Group, LLC
Solvothermal Synthesis
61
149. Kakade, M.B., Ramanthan, S., and Ravindran, P.V., J. Alloys Comp., 350, 123,
2003.
150. Inoue, M., Kominami, H., Otsu, H., and Inui, T., Nippon Kagaku Kaishi (J. Chem.
Soc. Jpn.), 1254, 1991.
151. Kominami, H., Inoue, M., and Inui, T., Nippon Kagaku Kaishi (J. Chem. Soc.
Jpn.), 605, 1993.
152. Cockayne, B., J. Less-Common Met., 114, 199, 1985.
153. Mill', B.V., Soviet Phys.-Crystal., 12, 137, 1967.
154. Kolb, E.D., and Laudise, R.A., J. Cryst. Growth, 29, 29, 1975.
155. Takamori, T., and David, L.D., Am. Ceram. Soc. Bull., 65, 1282, 1986.
156. Inoue, M., Otsu, H., Kominam, H., and Inui, T., J. Mater. Sci. Lett., 14, 1303, 1995.
157. Mizuno, M., and Yamada, T., J. Ceram. Soc. Jpn., 97, 1334, 1989.
158. LaMer, V.K., and Dinegar, R.H., J. Am. Chem. Soc., 72, 4847, 1950.
159. Inoue, M., Nishikawa, T., Nakamura, T., and Inui, T., J. Am. Ceram. Soc., 80,
2157, 1997.
160. Bertaut, F., and Mareschal, J., Compt. Rend., 257, 867, 1963.
161. Inoue, M., Nishikawa, T., and Inui, T., J. Mater. Res., 13, 856, 1998.
162. Inoue, M., Adv. Sci. Tech., 14, 41, 1999.
163. Inoue, M., Nakamura, T., Otsu, H., Kominami, H., and Inui, T., Nippon Kagaku
Kaishi (J. Chem. Soc. Jpn.), 612, 1993.
164. Cruickshank, M.C., and Dent Glasser, L.S., Acta Cryst., C41, 1041, 1985.
165. Laine, R.M., Blohowiak, K.Y., Robinson, T.R., Hoppe, M.L., Nardi, P., Kampf,
J., and Uhm, J., Nature (London), 353, 642, 1991.
166. Day, V.W., Eberspacher, T.A., Frey, M.H., Klemperer, W.G., Liang, S., and Payne,
D.A., Chem. Mater., 8, 330, 1996.
167. Kimura, M., Inoue, M., and Inui, T., 72nd National Meeting of the Chemical
Society of Japan, Tokyo, March 1997, abstract no. 1BY26.
168. Suyama, Y., and Nagasawa, M., J. Am. Ceram. Soc., 77, 603, 1994.
169. Inoue, M., Inoue, N., Yasuda, T., Takeguchi, T., and Iwamoto, S., Adv. Sci. Technol.,
29, 1421, 2000.
170. Takahashi, M., Iwamoto, S., and Inoue, M., Adv. Tech. Mater. Mater. Proc. J, 4,
76, 2002.
171. Inoue, M., Otsu, H., Kominami, H., and Inui, T., Nippon Kagaku Kaishi (J. Chem.
Soc. Jpn.), 1358, 1991.
172. Inoue, M., Nishikawa, T., and Inui, T., J. Mater. Sci. 33, 5835, 1998.
173. Yamaguchi, O., Takeoka, K., and Hayashida, A., J. Mater. Sci. Lett., 10, 101,
1990.
174. Kominami, H., Kohno, M., and Kera, Y., J. Mater. Chem., 10, 1151, 2000.
175. Chen, D., and Xu, R., J. Mater. Chem., 8, 965, 1998.
176. Bocquet, J.F., Chhor, K., and Pommier, C., Mater. Chem. Phys., 57, 273, 1999.
177. Zhao, J., Fan, W., Wu, D., and Sun, Y., J. Mater. Res., 15, 402, 2000.
178. Chen, D., and Jiao, X., J. Am. Ceram. Soc., 83, 2637, 2000.
179. Feldmann, C., and Jungk, H.-O., Angew. Chem. Int. Ed., 40, 359, 2001.
180. Mekelkina, O., Hüsing, N., Pongratz, P., and Schubert, U., J. Non-Cryst. Solids,
285, 64, 2001.
181. Yu, D., Yu, W., Wang, D., and Qian, Y., Thin Sold Films, 419, 166, 2002.
182. Bae, D.-S., Han, K.-S., Cho, S.-B., and Choi, S.H., Mater. Lett., 37, 255, 1998.
183. Chen, D., Jiao, X., and Chen, D., Mater. Res. Bull., 36, 1057, 2001.
© 2005 by Taylor & Francis Group, LLC
62
Chemical Processing of Ceramics, Second Edition
184. Zhang, Y., Xu, G., Yan, Z., Yang, Y., Liao, C., and Yan, C., J. Mater. Chem., 12,
970, 2002.
185. Bae, D.-S., Lim, B., Kim, B.-I., and Han, K.-S., Mater. Lett., 56, 610, 2002.
186. Bae, D.-S., Kim, S.-W., Lee, H.-W., and Han, K.-S., Mater. Lett., 57, 1997, 2003.
187. Pang, G., Sominska, E., Cölfen, H., Mastai, Y., Avivi, S., Koltypin, Y., and Gedanken, A., Langmuir, 17, 3223, 2001.
188. Yin, S., Inoue, Y., Uchida, S., Fujishiro, Y., and Sato, T., Rev. High Press. Sci.
Technol., 7, 1438, 1998.
189. Yin, S., Inoue, Y., Uchida, S., Fujishiro, Y., and Sato, T., J. Mater. Res., 13, 844,
1998.
190. Inoue, Y., Yin, S., Uchda, S., Ishitsuka, M., Min, E., and Sato, T., Br. Ceram.
Trans., 97, 222, 1998.
191. Lu, Q., Chen, D., and Jiao, X., J. Mater. Chem., 12, 687, 2002.
192. Inoue, M., Kominami, H., and Inui, T., Appl. Catal. A, 121, L1, 1995.
193. Kominami, H., Takada, Y., Yamagiw, H., Kera, Y., Inoue, M., and Inui, T., J. Mater.
Sci., 15, 197, 1996.
194. Kominami, H., Murakami, S., Kera, Y., and Ohtani, B., Catal. Lett., 56, 125, 1998.
195. Kominami, H., Kato, J., Takada, Y., Murakami, S., Inoue, M., Inui, T., Ohtani, B.,
and Kera, Y., Ind. Eng. Chem. Res., 38, 3925, 1999.
196. Kominami, H., Oki, K., Kohno, M., Onoue, S., and Kera, Y., J. Mater. Chem., 11,
604, 2001.
197. Kominami, H., Miyakawa, M., Murakam, S., Yoshida, T., Kohno, M., Onoue, S.,
Kera, Y., and Ohtani, B., Phys. Chem. Chem. Phys., 3, 2697, 2001.
198. Lee, S.-H., Kang, M., Cho, S.M., Han, Y., Kim, B.-W., Yoon, K.J., and Chung,
C.-H., J. Photochem. Photobiol., A, 146, 121, 2001.
199. Whittingham, M.S., and Jacobson, A.J., Eds., Intercalation Chemistry, Academic
Press, New York, 1982.
200. Li, W.-J., Shi, E.-W., Chen, Z.-Z., Zhen, Y.-Q., and Yin, Z.-W., J. Solid State
Chem., 163, 132, 2002.
201. Wang, W., Wu, M., and Liu, X., J. Solid State Chem., 164, 5, 2002.
202. Kanno, R., Shirane, T., Kawamoto, Y., Takeda, Y., Takano, M., Ohashi, M., and
Yamaguchi, Y., J. Electrochem. Soc., 143, 2435, 1996.
203. Matsumura, T., Kanno, R., Inaba, Y., Kawamoto, Y., and Takano, M., J. Electrochem. Soc., 149, A1509, 2002.
204. Tabuchi, M., Ado, K., Kobayashi, H., Matsubara, I., Kageyama, H., Wakita, M.,
Tsutsui, S. Nasu, S., Takeda, Y., Masquelier, C., Hirana, A., and Kanno, R., J.
Solid. State Chem., 141, 554, 1989.
205. Song, L., Hu, Y., Wang, S., Chen, Z., and Fan, W., J. Mater. Chem., 12, 3152, 2002.
206. Liu, Z.-H., Ooi, K., Kanoh, H., Tang, W., Yang, X., and Tomida, T., Chem. Mater.,
13, 473, 2001.
207. Torkar, H., Worel, H., and Krischner, H., Monatsh. Chem., 91, 653, 1960.
208. Toraya, H., Yoshimura, M., and Somiya, S., J. Am. Ceram. Soc., 65, C-72, 1982.
209. Inoue, M., Kimura, M., and Inui, T., Chem. Commun., 957, 1999.
210. Inoue, M., Kimura, M., and Inui, T., Ceram. Trans., 108, 53, 2000.
211. Chen, S.-J., Li, L.-H., Chen, X.-T., Xue, Z., Hong, J.-M., and You, X.-Z., J. Cryst.
Growth, 252, 184, 2003.
212. Komarneni, S., Roy, R., and Li, Q.H., Mater. Res. Bull., 27, 1393, 1992.
213. Komarneni, S., Pidugu, R., Li, Q.H., and Roy, R., J. Mater. Res., 10, 1687, 1995.
© 2005 by Taylor & Francis Group, LLC
Solvothermal Synthesis
63
214. Komarneni, S., Li, D., Newalkar, B., Katsuki, H., and Bhalla, A.S., Langmuir, 18,
5959, 2002.
215. Li, W.-J., Shi, E.-W., Chen, Z.-Z., Zhen, Y.-Q., and Yin, Z.-W., J. Solid State
Chem., 163, 132, 2002.
216. He, W., Zhang, Y., Zhang, X., Wang, H., and Yan, H., J. Cryst. Growth, 252, 285,
2003.
217. Zhang, W., Wang, C., Zhang, X., Xie, Y., and Qian, Y., Solid State Ionics, 117,
331, 1999.
© 2005 by Taylor & Francis Group, LLC
3
Mechanochemical
Synthesis of Ceramics
Aaron C. Dodd
CONTENTS
I. Introduction .............................................................................................65
A. Process Description..........................................................................66
B. Milling Systems for Mechanochemical Processing ........................66
C. Powder Contamination.....................................................................67
II. Mechanical Grinding...............................................................................67
III. Mechanical Alloying ...............................................................................67
A. Ferroelectric Perovskites..................................................................68
B. Synthesis of High-Coercivity Ferrite Magnets ...............................68
IV. Reaction Milling .....................................................................................69
A. Reaction Kinetics .............................................................................69
B. Carbide and Nitride Synthesis.........................................................71
C. Mechanochemical Synthesis of Ultrafine Powders.........................71
V. Conclusion...............................................................................................73
References ...........................................................................................................74
I. INTRODUCTION
The kinetics of solid state chemical reactions are ordinarily limited by the rate
at which reactant species are able to diffuse across phase boundaries and through
intervening product layers. As a result, conventional solid state techniques for
manufacturing ceramic materials invariably require the use of high processing
temperatures to ensure that diffusion rates are maintained at a high level, thus
allowing chemical reaction to proceed without undue kinetic constraint.1
Conducting synthesis reactions at high temperatures inevitably leads to the
formation of coarse-grained reaction products due to the occurrence of sintering
and grain growth during processing. Such coarse-grained materials are generally
undesirable for manufacturing advanced engineering ceramics due to their poor
sinterability. Furthermore, the high temperatures required for rapid solid state
chemical reaction can prevent the successful synthesis of materials that are thermodynamically metastable. Consequently there is considerable interest in alter-
65
© 2005 by Taylor & Francis Group, LLC
66
Chemical Processing of Ceramics, Second Edition
native synthesis techniques that either reduce the required processing temperatures or eliminate the need for applied heating altogether.2
The apparent necessity for high processing temperatures in solid state synthesis reactions can be avoided through the use of mechanochemical processing,
which simply entails high-energy milling of a reactant powder charge.3 This has
the effect of inducing chemical changes directly or activating chemical reaction
during subsequent low-temperature heat treatment. This chapter presents an overview of mechanochemical processing and its application within the synthesis and
processing of ceramic materials.
A. PROCESS DESCRIPTION
Mechanochemical processing refers to a range of techniques, which can be
conveniently classified as mechanical grinding, mechanical alloying, and reaction
milling. Although all of these techniques are based on high-energy mechanical
processing, they are distinguished from each other by the nature of the reactant
powder charge and also by the structural and chemical changes that occur during
processing.4
Mechanical grinding specifically refers to milling processes where there is
no change in the chemical composition of the reactant powder charge. Mechanical
alloying refers to the formation of alloys by milling of precursor materials. Finally,
the process termed reaction milling uses high-energy mechanical processing to
induce chemical reactions.
B. MILLING SYSTEMS
FOR
MECHANOCHEMICAL PROCESSING
The most commonly used mill in experimental studies of mechanochemical
processing is the vibratory Spex 8000 mixer/mill. In this mill, the reactant powder
charge and grinding are contained within a cylindrical vial that undergoes rapid
vibratory motion in a “figure-eight” trajectory. The Spex mill is highly energetic,
which allows the use of short milling times.
Another type of mill commonly used in studies of mechanochemical processing is the planetary mill. As implied by the name, the milling container is rotated
about two separate parallel axes in a manner analogous to the rotation of a planet
around the sun. The milling action of a planetary mill is similar to that of a
conventional horizontal tumbling mill. However, the velocity of the grinding
media is not limited by centrifugal forces.
Attritor mills consist of a stationary container filled with grinding balls that
are stirred by impellers attached to a drive shaft. The velocity of the grinding
media in attritor mills is significantly lower than that in planetary or Spex-type
mills and consequently the energy available for mechanochemical processing is
lower. However, unlike planetary and Spex-type mills, attritors are readily amenable to scale-up, which allows mass production of powders through mechanochemical processing.5
© 2005 by Taylor & Francis Group, LLC
Mechanochemical Synthesis of Ceramics
67
C. POWDER CONTAMINATION
A major issue of concern with regard to mechanochemical processing is contamination of the powder charge, since the milling action inevitably results in abrasion
of the grinding media and container. The degree and type of contamination
experienced during mechanochemical processing has been found to depend on a
variety of factors, including the relative hardness of the powder charge and
grinding media, the duration of milling, and the chemical nature of the powder
charge. In general, the extent of such contamination can be limited by minimizing
the milling duration and ensuring that the hardness of the grinding media and
container is greater than that of the powder being milled.
One approach that has been taken for avoiding contamination of the powder
charge from the grinding media and container is to use the same material for the
media and container as at least one of the components of the powder charge.
However, this approach is of limited applicability given the restricted range of
materials that are suitable for the construction of grinding media. Furthermore,
even though contamination by foreign materials is avoided by this method, the
stoichiometry of the final powder will be different from that of the starting powder
charge.6
II. MECHANICAL GRINDING
Mechanical grinding finds extensive use in mineral processing and powder metallurgy for the purposes of particle size reduction and powder blending, However,
mechanical grinding has also found use as a technologically simple means of
inducing structural transformations7 and also for synthesizing nanocrystalline and
amorphous materials.8 In addition, experimental studies have shown that mechanical grinding can also be used to significantly increase the chemical reactivity of
materials during subsequent processing, thus allowing the use of lower processing
temperatures.
High-energy mechanical milling results in severe microstructural refinement
and the accumulation of lattice defects, which can substantially increase the
chemical reactivity of the powder charge. This phenomenon, which is known as
mechanical activation, can be used to enhance the kinetics of solid state synthesis
reactions. For example, Ren et al.9,10 have developed a process, called integrated
mechanical and thermal activation (IMTA), for the synthesis of nanostructured
carbide and nitride ceramic powders. In this process, high-energy milling of the
reactant mixtures allows the use of comparatively low temperatures and short
reaction times during subsequent carbothermic reduction.
III. MECHANICAL ALLOYING
Mechanical alloying was originally developed in the late 1960s at the International
Nickel Company as a means of manufacturing oxide dispersion strengthened
alloys for aerospace applications.6 Since then, the process of mechanical alloying
© 2005 by Taylor & Francis Group, LLC