1. Trang chủ >
  2. Cao đẳng - Đại học >
  3. Chuyên ngành kinh tế >

TÀI LIỆU THAM KHẢO

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (488.44 KB, 110 trang )


13.



Carobrez, A. P. and Bertoglio, L. J., Ethological and temporal analyses of

anxiety-like behavior: the elevated plus-maze model 20 years on. Neurosci

Biobehav Rev, 2005. 29(8): p. 1193-205.



14.



15.



Carr, M. N., Bekku, N., and Yoshimura, H., Identification of anxiolytic

ingredients in ginseng root using the elevated plus-maze test in mice. Eur J

Pharmacol, 2006. 531(1-3): p. 160-5.

Chakraborty, S., et al., Correlation between lipid peroxidation-induced TBARS

level and disease severity in obsessive-compulsive disorder.

Neuropsychopharmacol Biol Psychiatry, 2009. 33(2): p. 363-6.



16.



17.

18.



19.



20.



21.



22.



23.



24.

25.



Prog



Chatterjee, Manavi, Jaiswal, Manoj, and Palit, Gautam, Comparative evaluation

of forced swim test and tail suspension test as models of negative symptom of

schizophrenia in rodents. ISRN psychiatry, 2012. 2012: p. 595141-595141.

Dhawan, K., Kumar, S., and Sharma, A., Anti-anxiety studies on extracts of

Passiflora incaARNta Linneaus. J Ethnopharmacol, 2001. 78(2-3): p. 165-70.

Esterbauer, H., Schaur, R. J., and Zollner, H., Chemistry and biochemistry of 4hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med,

1991. 11(1): p. 81-128.

Griebel, G., et al., Differential modulation of antipredator defensive behavior in

Swiss-Webster mice following acute or chronic administration of imipramine

and fluoxetine. Psychopharmacology (Berl), 1995. 120(1): p. 57-66.

Grundmann, O., et al., Kaempferol from the leaves of Apocynum venetum

possesses anxiolytic activities in the elevated plus maze test in mice.

Phytomedicine, 2009. 16(4): p. 295-302.

Head, K. A. and Kelly, G. S., Nutrients and botanicals for treatment of stress:

adrenal fatigue, neurotransmitter imbalance, anxiety, and restless sleep. Altern

Med Rev, 2009. 14(2): p. 114-40.

Ieraci, A., Mallei, A., and Popoli, M., Social Isolation Stress Induces AnxiousDepressive-Like Behavior and Alterations of Neuroplasticity-Related Genes in

Adult Male Mice. Neural Plast, 2016. 2016: p. 6212983.

Lakhan, Shaheen E. and Vieira, Karen F., Nutritional and herbal supplements

for anxiety and anxiety-related disorders: systematic review. Nutrition

jouARNl, 2010. 9: p. 42-42.

Lister, R. G., The use of a plus-maze to measure anxiety in the mouse.

Psychopharmacology (Berl), 1987. 92(2): p. 180-5.

Matsumoto, K., et al., Effects of methylenechloride-soluble fraction of Japanese

angelica root extract, ligustilide and butylidenephthalide, on pentobarbital



sleep in group-housed and socially isolated mice. Life Sci, 1998. 62(23): p.

26.



2073-82.

Matsumoto, K., et al., Effect of Japanese angelica root extract on

pentobarbital-induced sleep in group-housed and socially isolated mice:

evidence for the central action. Jpn J Pharmacol, 1997. 73(4): p. 353-6.



27.



28.



Matsumoto, K., et al., Social isolation stress-induced aggression in mice: a

model to study the pharmacology of neurosteroidogenesis. Stress, 2005. 8(2): p.

85-93.

Matsumoto, K., et al., GABA(A) receptor neurotransmission dysfunction in a

mouse model of social isolation-induced stress: possible insights into a nonserotonergic mechanism of action of SSRIs in mood and anxiety disorders.



29.



30.



31.



32.

33.



34.



35.

36.



Stress, 2007. 10(1): p. 3-12.

Matsumoto, T., et al., Biosynthesis and processing of endogenous BDNF: CNS

neurons store and secrete BDNF, not pro-BDNF. Nat Neurosci, 2008. 11(2): p.

131-3.

Millstein, R. A. and Holmes, A., Effects of repeated mateARNl separation on

anxiety- and depression-related phenotypes in different mouse strains. Neurosci

Biobehav Rev, 2007. 31(1): p. 3-17.

Porsolt, R. D., Bertin, A., and Jalfre, M., Behavioral despair in mice: a primary

screening test for antidepressants. Arch Int Pharmacodyn Ther, 1977. 229(2):

p. 327-36.

Porsolt, R. D., Le Pichon, M., and Jalfre, M., Depression: a new animal model

sensitive to antidepressant treatments. Nature, 1977. 266(5604): p. 730-2.

Prut, Laetitia and Belzung, Catherine, The open field as a paradigm to measure

the effects of drugs on anxiety-like behaviors: a review. European JouARNl of

Pharmacology, 2003. 463(1): p. 3-33.

Ratnakar, S., et al., Evaluation of anxiety, depression and urinary protein

excretion among the family caregivers of advanced cancer patients. Biol

Psychol, 2008. 79(2): p. 234-8.

Robak, J. and Gryglewski, R. J., Flavonoids are scavengers of superoxide

anions. Biochem Pharmacol, 1988. 37(5): p. 837-41.

Sandau, U. S. and Handa, R. J., Glucocorticoids exacerbate hypoxia-induced

expression of the pro-apoptotic gene Bnip3 in the developing cortex.

Neuroscience, 2007. 144(2): p. 482-494.



37.



Sarris, J., et al., Herbal medicine for depression, anxiety and insomnia: a

review

of

psychopharmacology

and

clinical

Neuropsychopharmacol, 2011. 21(12): p. 841-60.



evidence.



Eur



38.



Steru, L., et al., The tail suspension test: a new method for screening

antidepressants in mice. Psychopharmacology (Berl), 1985. 85(3): p. 367-70.



39.



Thierry, B., et al., The tail suspension test: ethical considerations.

Psychopharmacology (Berl), 1986. 90(2): p. 284-5.



40.



Tohda, M., et al., Enhanced expression of BCL2/adenovirus EIB 19-kDainteracting protein 3 mARN, a candidate for intrinsic depression-related factor,

and effects of imipramine in the frontal cortex of stressed mice. Biol Pharm

Bull, 2010. 33(1): p. 53-7.



41.



White, H. L., Scates, P. W., and Cooper, B. R., Extracts of Ginkgo biloba

leaves inhibit monoamine oxidase. Life Sci, 1996. 58(16): p. 1315-21.



42.



Willner, P., The validity of animal models of depression. Psychopharmacology

(Berl), 1984. 83(1): p. 1-16.

Woelk, H., et al., Ginkgo biloba special extract EGb 761 in generalized anxiety

disorder and adjustment disorder with anxious mood: a randomized, doubleblind, placebo-controlled trial. J Psychiatr Res, 2007. 41(6): p. 472-80.

Adsersen, Anne, et al., Screening of plants used in Danish folk medicine to treat

memory dysfunction for acetylcholinesterase inhibitory activity. JouARNl of

Ethnopharmacology, 2006. 104(3): p. 418-422.



43.



44.



45.



46.



47.



48.

49.



Brunton, L., Lazo, J., and Parker, K. , Goodman & Gilman’s: The

Pharmacological Basis of Therapeutics. 11th ed. 2006, New York: Mc GrawHill Companies, Inc.

Chang, Cheng-Kuei and Lin, Mao-Tsun, DL-Tetrahydropalmatine may act

through inhibition of amygdaloid release of dopamine to inhibit an epileptic

attack in rats. Neuroscience Letters, 2001. 307(3): p. 163-166.

Chernevskaja, N. I., Krishtal, O. A., and Valeyev, A. Y., Inhibitions of the

GABA-induced currents of rat neurons by the alkaloid isocoryne from the plant

Corydalis pseudoadunca. Toxicon, 1990. 28(6): p. 727-730.

de Kloet, E. Ron, Joëls, Marian, and Holsboer, Florian, Stress and the brain:

from adaptation to disease. Nature Reviews Neuroscience, 2005. 6: p. 463.

Hung, Tran Manh, et al., Cholinesterase inhibitory and anti-amnesic activity of

alkaloids from Corydalis turtschaninovii. JouARNl of Ethnopharmacology,

2008. 119(1): p. 74-80.



50.



Ieraci, Alessandro, et al., Physical exercise and acute restraint stress

differentially modulate hippocampal brain-derived neurotrophic factor

transcripts and epigenetic mechanisms in mice: EPIGENETIC MODULATION



51.



OF BDNF EXONS BY EXERCISE AND STRESS. Vol. 25. 2015.

Iranshahy, M., Quinn, R. J., and Iranshahi, M., Biologically active isoquinoline

alkaloids with drug-like properties from the genus Corydalis. RSC Advances,

2014. 4(31): p. 15900-15913.



52.



53.



Lin, Ge, et al., Chemistry and biological activities of naturally occurring

phthalides, in Studies in Natural Products Chemistry, R. Atta ur, Editor. 2005,

Elsevier. p. 611-669.

Lin, Mao-Tsun, Wang, Jhi-Joung, and Young, Ming-Shing, The protective

effect of dl-tetrahydropalmatine against the development of amygdala kindling

seizures in rats. Neuroscience Letters, 2002. 320(3): p. 113-116.



54.



55.

56.



57.



58.



59.



60.

61.



Nimse, Satish Balasaheb and Pal, Dilipkumar, Free radicals, natural

antioxidants, and their reaction mechanisms. RSC Advances, 2015. 5(35): p.

27986-28006.

Organization, World Health, Depression and other common mental disorders:

global health estimates. 2017.

Pariante, Carmine M. and Lightman, Stafford L., The HPA axis in major

depression: classical theories and new developments. Trends in Neurosciences,

2008. 31(9): p. 464-468.

Sarris, Jerome, et al., Herbal medicine for depression, anxiety and insomnia: A

review of psychopharmacology and clinical evidence. European

Neuropsychopharmacology, 2011. 21(12): p. 841-860.

Shea, Alison, et al., Child maltreatment and HPA axis dysregulation:

relationship to major depressive disorder and post traumatic stress disorder in

females. Psychoneuroendocrinology, 2005. 30(2): p. 162-178.

Tsigos, Constantine and Chrousos, George P., Hypothalamic–pituitary–adrenal

axis, neuroendocrine factors and stress. JouARNl of Psychosomatic Research,

2002. 53(4): p. 865-871.

Xiao, Hai-Tao, et al., Acetylcholinesterase inhibitors from Corydalis yanhusuo.

Natural Product Research, 2011. 25(15): p. 1418-1422.

Yang, Zhongduo, et al., Acetylcholinesterase inhibitory activity of the total

alkaloid from traditional Chinese herbal medicine for treating Alzheimer’s

disease. Medicinal Chemistry Research, 2012. 21(6): p. 734-738.



62.



Alam, Md Nur, Bristi, Nusrat Jahan, and Rafiquzzaman, Md, Review on in vivo

and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical

JouARNl, 2013. 21(2): p. 143-152.



63.



64.



Burton, T. R. and Gibson, S. B., The role of Bcl-2 family member BNIP3 in cell

death and disease: NIPping at the heels of cell death. Cell Death And

Differentiation, 2009. 16: p. 515.

Buschmann, Helmut, Antidepressants, antipsychotics, anxiolytics : from

chemistry and pharmacology to clinical application. 2007: Wiley-VCH. 12141214.



65.



Castagné, Vincent, Moser, Paul, and Porsolt, Roger D., Behavioral Assessment

of Antidepressant Activity in Rodents. 2009: CRC Press/Taylor & Francis.



66.



Fainman, D., Examining the relationship between anxiety disorders and

depression. Vol. 22. 2004.



67.



Han, Huishan, et al., Anxiolytic-like effects of sanjoinine A isolated from

Zizyphi Spinosi Semen: Possible involvement of GABAergic transmission.

Pharmacology Biochemistry and Behavior, 2009. 92(2): p. 206-213.

Muscat, Richard, Sampson, David, and Willner, Paul, Dopaminergic

mechanism of imipramine action in an animal model of depression. Biological

Psychiatry, 1990. 28(3): p. 223-230.

R Drzyzga, Łukasz, Marcinowska, Agnieszka, and Obuchowicz, Ewa, Drzyzga

LR, Marcinowska A, Obuchowicz E. Antiapoptotic and neurotrophic effects of



68.



69.



70.

71.



antidepressants: a review of clinical and experimental studies. Brain Res Bull

79: 248-257. Vol. 79. 2009. 248-57.

Vinh, Nguyen Quang and Eun, Jong-Bang, Antioxidant activity of solvent

extracts from Vietnamese medicinal plants. Vol. 5. 2011.

Xu, Wenyuan, et al., Activation of Bcl-2-Caspase-9 Apoptosis Pathway in the

Testis of Asthmatic Mice. Vol. 11. 2016. e0149353.



PHỤ LỤC 1

Định lượng alkaloid tồn phần trong cao chiết ethanol cải cần

Cân chính xác khoảng 1,000 g cao cải cần, thêm 30 ml dung dịch acid

sulfuric 2%, siêu âm trong 15 phút. Lọc dung dịch acid này qua bông, rửa bông

bằng 5 ml dung dịch acid sulfuric 2%. Gộp dịch chiết và dịch rửa. Kiềm hóa

dịch acid này bằng ammoniac đậm đặc đến pH 10. Sau đó chiết bằng chloroform

5 lần, mỗi lần 10 ml. Gộp toàn bộ dịch chiết chloroform, làm khan nước bằng

natri sulfat khan, lọc vào chén đã sấy khô và cân bì trước, rửa natri sulfat bằng 5

ml chloroform rồi lọc vào chén cân, bốc hơi chloroform trên cách thủy đến cắn.

Sấy cắn ở 100℃ đến khối lượng không đổi.

Hàm lượng alkaloid tồn phần trong cao CC được tính theo cơng thức:

mcắn

X=



mcao x (100 –



x 10000 (%)



acao)

Trong đó: X: hàm lượng alkaloid toàn phần trong cao

chiết cải cần (%)

mcắn: khối lượng cắn alkaloid toàn phần (g).

mcao: khối lượng cao chiết (g).

acao: độ ẩm cao chiết (g).



PHỤ LỤC 2

Kết quả định lượng hàm lượng alkaloid tổng số trong cao chiết cồn

Sau khi tiến hành định lượng kết quả được trình bày ở bảng a.

Bảng a. Hàm lượng alkaloid toàn phần trong cao CC.

Lần thí



Độ



Khối



Khối lượng



Hàm lượng



M ± SD



nghiệm



ẩm



lượng



cắn alkaloid



alkaloid tồn



(%)



(%)



cao (g)



tồn phần (g)



phần (%)



1



11,65



1,012



0,038



4,25



2



11,65



1,015



0,036



4,01



3



11,65



1,013



0,037



4,13



4,02



4



11,65



1,003



0,034



3,84



± 0,17



5



11,65



1,009



0,034



3,81



6



11,65



1,005



0,036



4,05



Như vậy, hàm lượng alkaloid toàn phần trong cao chiết cồn từ cải cần

khoảng 4,02% tính theo chế phẩm khô kiệt.



Xem Thêm
Tải bản đầy đủ (.docx) (110 trang)

×